

Semantic Web Systems Metadata

Jacques Fleuriot
School of Informatics

In the previous lecture

Possible components of ontologies contain:

- individuals
- classes
- attributes
- relations
- functions
- axioms
- planning rules

Representation considerations:

- trade-off between expressivity and efficiency.
- decidability, soundness, completeness.

In this lecture

- Metadata
 - What, how and why.
- Dublin Core
 - A formal metadata scheme.
- Unique Identifiers
 - Address ambiguous and synonymous names.
- RDF
 - A gentle intro.

Metadata

Data and Metadata

Examples, 1

- pottery fragment: site of discovery
- packet of crisps: average salt content
- person: date of birth

Examples, 2

- academic paper: date of publication
- map: scale
- audio files: sampling rate
- digital photo: make of camera used
- database entry: who entered the data
- web-page: topic

Metadata: data about data.

More on Metadata

http://dublincore.org/documents/usageguide (Hillmann, 2005) http://wiki.dublincore.org/index.php/User_Guide (Rühle et al, 2011-)

A metadata record consists of a set of attributes, or elements, necessary to describe the resource in question

Associating metadata with a resource

Embedding: the metadata is **physically** contained in the resource. Mainly relevant for digital resources, e.g. as a file header.

Embedded metadata (Postscript)

%!PS-Adobe-2.0

%% Creator dvips 5.526 Copyright 1986, 1994 Radical...

%%Title: Paper.dvi

%% CreationDate: Tue Sep 13 12:38:42 1994

%%Pages: 24

%% BeginProcSet: tex.pro

/TexDict 250 dict def TexDict begin /N{def}def...

Associating metadata with a resource

Aboutness: the metadata is a separate resource, and 'points' to the resource it is about.

Resource Identifiers

What scheme can we use for globally identifying resources? Digital resources use URIs (Uniform Resource Identifiers) Similar to URLs but more general: URIs don't have to be addressable

Advantage of explicit metadata

- Discovering resources, both by software agents and by humans (searching, browsing).
- Compare web with a structured database:
 - database records can be searched according to the field.

DB Query

SELECT Author, Title FROM Catalogue WHERE Author = "Burns"

Advantage of explicit metadata

Pet Nutrition.Pet food developed by Veterinary Surgeon John Burns for ...

Formal Metadata Schemes

- Library catalogue cards adopt informal conventions for expressing metadata.
- What about formal conventions for recording computer-based metadata?
- Especially metadata about digital objects...
- Example: Dublin Core Metadata Initiative.

Dublin Core

Dublin Core (DC)

- Initiated by librarians.
- Well established and widely used metadata standard.
- 15 elements for describing resources.
- A small language for making a particular class of statements about resources.
- The resource is the implicit subject of the statements

Example of DC statements

```
Title = "A Red, Red Rose"
```

Creator = "Robert Burns"

Date = 1794

Type = poem

Simple DC Elements

Dublin Core Metadata Element Set (DCMES)

Content	Intellectual Property	Instantiation
Coverage	Creator	Date
Description	Contributor	Format
Туре	Publisher	Identifier
Relation	Rights	Language
Title		
Subject		
Source		

http://dublincore.org/documents/dces/

How elements are defined

- Creator: An entity primarily responsible for making the content of the resource.
 - Examples of a Creator include a person, an organization, or a service.
 - Typically, the name of a Creator should be used to indicate the entity.
- Format: The file format, physical medium, or dimensions of the resource.
 - Examples of dimensions include size and duration.
 - Recommended best practice is to use a controlled vocabulary such as the list of Internet Media Types [MIME].

More on elements

Elements are not functions: they can be repeated.

Repeated Elements

Title = "In the Heart of the Moon"

Creator = "Ali Farka Touré"

Creator = "Toumani Diabaté"

- There is no mandatory constraint on element values, but recommended best practice is to use a 'controlled vocabulary'.
- Some DC Qualifiers provide the latter.

Simple and Qualified Dublin Core

Simple DC: 15 elements listed earlier.

• Qualified DC:

- Additional 3 elements: Audience, Provenance and RightsHolder.
- Qualifiers extend or refine the original 15 elements.

Qualifiers: Refinement

Element Refinement

Making the meaning of an element more specific.

Example: Refinements of Date

Used when more than one date is needed

dateSubmitted = 2001-01-31

dateAccepted = 2001-10-01

Qualifiers: Encoding Scheme

Encoding Scheme

Provides controlled vocabulary or formatting structure to aid interpretation of an element value.

Example: Controlled Vocabulary for Language

Value of Language element is selected from list registered by

ISO 639-2 (Alpha-3 Code)

Language = eng

Example: YYYY-MM-DD format for dates (W3CDTF)

dateSubmitted = 2001-01-31

Unique Identifiers

Generalising the notion of Resource

- In the Semantic Web vision, anything can be a resource.
- The data/metadata distinction is blurred.
- Challenge: representing knowledge about resources on a web-scale.

Challenges to 'controlled vocabulary'

Johann Strauss

Title = "Wiener Waltz"

Creator = "Johann Strauss"

Wikipedia Entry

- Johann Strauss I (1804-1849), or Johann Strauss Sr., composer, popularizer of the waltz
- Johann Strauss II (1825-1899), or Johann Strauss Jr., composer, known as the "Waltz King", son of Johann I
- Johann Strauss III (1866-1939), composer, son of Eduard Strauss and grandson of Johann I

More on Identifiers

- Problems with ambiguous names
- Problems with synonymous names

Synonyms (Aliases)

J. Strauss I

Johann Strauss Vater

Johann Strauss, Sr.

Johann Strauß sr.

Johann Straus sr.

Johann Strauss Sr

Johann Strauss Snr.

Unique Identifiers

- DBPedia (http://dbpedia.org): semi-automatic transformation of Wikipedia into RDF.
- Every resource that is the subject of a page in Wikipedia has a corresponding URI in DBpedia.

DBPedia URIs

Wikipedia: http://en.wikipedia.org/wiki/Johann_Strauss_I

DBPedia: http://dbpedia.org/resource/Johann_Strauss_I

Unique Identifiers

- MusicBrainz (http://musicbrainz.org): user-maintained 'metadatabase' for music
- Collects and makes available information such as artist name, release title, and the list of tracks that appear on a release
- Each artist receives an ArtistID of the form:

http://musicbrainz.org/artist/UUID

where UUID is a (128-bit) Universally Unique Identifier in its 36 character ASCII representation.

Example: http://musicbrainz.org/artist/9fff2f8a-21e6-47de-a2b8-7f449929d43f

RDF

RDF Background

- Dublin Core provides a syntax and a vocabulary for talking about resources.
- The vocabulary is given by the elements (Title, Creator, Format, ...)
- Lots of different, specialised vocabularies for talking about different objects / domains.
- W3C decided to build infrastructure where users can make assertions using their own vocabularies:
 - Resource Description Framework (RDF)
- RDF Working Group established in 1997

RDF Data Model

RDF example

Syntax: Dublin Core vs RDF

Dublin Core

Title = "In the Heart of the Moon"

Date = "2005"

Identifier = dbpedia:In_The_Heart_of_the_Moon

Creator = dbpedia:Ali_Farka_Touré

RDF Style

dbpedia:In_The_Heart_of_the_Moon dc:title "In the Heart of the Moon". dbpedia:In_The_Heart_of_the_Moon dc:date "2005". dbpedia:In_The_Heart_of_the_Moon dc:creator dbpedia:Ali_Farka_Touré.

RDF Syntax

- RDF statements identify a resource being described, a specific property and value of the property.
- Terminology:
 - subject (e.g. dbpedia:In_the_Heart_of_the_Moon).
 - predicate (e.g. dc:date).
 - object (e.g. "2005").

RDF Triples subject predicate object dbpedia:In_The_Heart_of_the_Moon dc:date "2005".

- Subjects can only be resources.
- Objects can be literals (e.g. strings) or resources.
- more usual relational syntax: date(dbpedia:In_the_Heart_of_the_Moon, "2005").

Processing RDF Statements

- RDF is designed to make machine-processable statements.
- Two things required:
 - a machine-processable syntax for expressing RDF statements ⇒ usually XML.
 - a machine-processable system for unambiguously identifying subjects, predicates and objects ⇒ URIs.

URIs

 Uniform Resource Identifier (URI): a simple and extensible means for identifying a resource.

Examples of Resources

an electronic document, an image, a source of information with a consistent purpose (e.g. "today's weather report for Los Angeles"), a service (e.g. an HTTP-to-SMS gateway), a collection of other resources

- Uniform Resource Location (URL): a special kind of URI that specifies a network location.
- A URI does not need to identify a networkaccessible resource.

More on URIs

Example URIs

- 1. http://www.ietf.org/rfc/rfc2396.txt
- 2. http://example.com/my/fictitious/example
- 3. ftp://ftp.is.co.za/rfc/rfc1808.txt
- 4. mailto:JohnDoe@example.com
- 5. news:comp.infosystems.www.servers.unix
- (1)–(2) are HTTP URIs.
- Originally intended to identify information resources (or documents), i.e. things which
 - carry some semantic content.
 - can be represented digitally.

Summary

- Dublin Core is a good concrete illustration of a formal metadata scheme.
- Motivation: more effective methods for finding resources on the web.
- Illustrates a protracted standardisation effort (started in 1994, DC Metadata Element Set, DCMES, became an ISO standard in 2003).
- Simple language: restricted set of elements, key-value pairs.
- Some extensibility via qualifiers.

Summary

- Metadata inevitably leads to describing concrete resources (e.g. people).
- ...but names are often ambiguous and hard for machines to deal with
 - China: more than 1.1 billion people share just 129 surnames (cf. 'Identity Crisis' paper, referenced at http://sites.google.com/site/masws09/uris)
- Various approaches for generating unique identifiers for resources
 - e.g. OpenID for people

Task

- Choose 3 things.
- Write down as much metadata about them as you can.
- Consider whether each piece of metadata is functional or not.
- What possible sources of confusion might there be?