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Course

• Make	sure	you	are	comfortable	with	graph	
theory,	exercise	and	notes	sets	0		and	1.	

• And	programming	graphs,	ipython etc

• These	are	simple	basics.	We	will	build	upon	these	
throughout

• Important	for	theory,	and coursework



Course
• Piazza	forum	up	at:	

http://piazza.com/ed.ac.uk/fall2018/infr11124/

• Please	join.	We	will	post	announcements	etc there.	

• Its	main	purpose	is	as	a	forum	for	you	to	discuss	course	
material
– Ask	questions	and	answer	them.	Post	relevant	things
– We	will	answers	some	questions,	not	all	(and	we	may	be	wrong!)
– Discuss	and	find	answers	yourself
– If	you	are	not	sure	if	your	answer	is	correct,	try	to	articulate	the	

doubt	exactly,	and	the	search	for	answers!



Unknown	optimals
• The	final	size	of	the	cascade	depends	on	the	initial	choice	

of	k	nodes

• Suppose	the	best	possible	choice	gives	us	a	cascade	of	size	
OPT	(short	for	optimal)

• We	do	not	know	what	OPT	is
• We	do	not	know	which	starting	set	gives	OPT

• Computing	the	OPT	or	the	OPT	set	is	NP-hard
– Computationally	intractable.	Takes	exponential	time.	Almost	as	

bad	as	trying	all	possible	starting	sets.



Approximations

• Exact	OPT	solution	is	impractical
• In	many	cases	a	“good”	solution	will	suffice.	
We	do	not	need	the	perfect	solution
– As	long	as	we	can	say	what	we	mean	by	good

• Suppose	we	find	an	algorithm	produces	a	
cascade	of	size	c*OPT
– It	is	a	c-approximation
– E.g.	½		approximation	reaches	½	of	OPT	nodes



• For	the	maximizing	sphere	of	influence	
problem,	there	is	a	simple	algorithm	that	gives	
an	approximation	of	

• To	prove	this,	we	will	use	a	property	called	
submodularity
– A	fundamental	concept	in	machine	learning
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Example:	Camera	coverage
• Suppose	you	are	placing	
sensors/cameras	to	monitor	a	
region	(eg.	cameras,	or	
chemical	sensors	etc)

• There	are	n	possible	camera	
locations

• Each	camera	can	“see”	a	region
• A	region	that	is	in	the	view	of	
one	or	more	sensors	is	covered

• With	a	budget	of	k	cameras,	
we	want	to	cover	the	largest	
possible	area
– Function	f:	Area	covered



Marginal	gains

• Observe:
• Marginal	coverage	
depends	on	other	
sensors	in	the	
selection
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Marginal	gains
• Observe:
• Marginal	coverage	

depends	on	other	
sensors	in	the	selection

• More	selected	sensors	
means	less	marginal	
gain	from	each	
individual

• Exactly	the	same	as	
social	sphere	of	
influence	problem



Influences	in	networks
• We	are	considering	simple	neighborhoods	

– E.g.	In	the	figure	below,	 selection	of	node	x	covers	the	set	of	neighbors	 N(x)

• A	node	can	influence	other	nodes	in	its	neighborhood:	E.g.	expose	a	friend	
to	a	new	product.

• We	are	trying	to	maximize	the	number	of	people	exposed	to	our	product



Submodular functions
• Suppose	function	f(x)	
represents	the	total	benefit	
of	selecting	x
– Like	area	covered
– And	f(S)	the	benefit	of	
selecting	set	S

• Function	f	is	submodular if:	

f(S [ {x})� f(S) � f(T [ {x})� f(T )

S ✓ T =)



Submodular functions

• Means	diminishing	 returns
• A	selection	of	x	gives	
smaller	benefits	if	many	
other	elements	have	been	
selected

f(S [ {x})� f(S) � f(T [ {x})� f(T )

S ✓ T =)



Submodular functions

• Our	Problem:	select	
locations	set	of	size	k	that	
maximizes	coverage

• NP-Hard

f(S [ {x})� f(S) � f(T [ {x})� f(T )

S ✓ T =)



Greedy	Approximation	algorithm

• Start	with	empty	set	S	=	∅
• Repeat	k	times:	
• Find	v	that	gives	maximum	marginal	gain:

• Insert	v	into	S
f(S [ {v})� f(S)



• Observation	1:	Coverage	
function	is	submodular

• Observation	2:	Coverage	
function	is	monotone:

• Adding	more	sensors	
always	increases	
coverage

S ✓ T ) f(S)  f(T )



Theorem

• For	monotone	submodular functions,	the	
greedy	algorithm	produces	a
approximation

• That	is,	the	value	f(S)	of	the	final	set	is	at	least	

– [Nemhauser et	al.	1978]

• (Note	that	this	algorithm	applies	to	submodularmaximzationproblems,	
not	to	minimization)
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Proof	

• Idea:
• OPT	is	the	max	possible
• At	every	step	there	is	at	
least	one	element	that	
covers	at	least	1/k	of	
remaining:
– So	≥(OPT	- current)	*	1/k

• Greedy	selects	one	such	
element



Proof	

• Idea:
• At	each	step	coverage	
remaining	becomes	

• Of	what	was	remaining	after	
previous	step
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Proof	

• After	k	steps,	we	have	
remaining	coverage	of	OPT

• Fraction	of	OPT	covered:
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Proof	of	the	main	claim

• Suppose	the	unknown	set	of	elements	that	gives		OPT	
is	given	by	set	C

• And	suppose	Si	is	the	set	selected	by	greedy	upto step	i

• At	every	step	there	is	at	least	one	element	that	covers	
1/k	of	remaining:
– So	(f(C)	– f(Si))	*	1/k

• Why	is	this	true?



Proof	of	the	main	claim

• At	every	step	there	is	at	least	one	element	
that	covers	1/k	of	remaining:
– So	(OPT	- current)	*	1/k

• At	step	0:	Suppose	to	the	contrary,	there	is	no	
such	element.	
– Then	k	cannot	give	OPT:	contradiction.



Proof	of	the	main	claim

• At	Si,	OPT	has	available	at	least	on	element	in	
C	that	covers	at	least	at	least	1/k	of	the	rest	of	
OPT
– Since	we	can	simply	add	k	elements	from	C	to	get	
OPT

• Now	consider	Greedy
– If	greedy	chose	si at	step	i,	that	is	because	it	gives	
at	least	as	much	marginal	gain	as	any	element	in	C
• So,	si covers	at	least	(f(C)	– f(Si))/k



Homework

• Write	out	the	proof	nicely!



• Theorem:	
– Positive	linear	combinations	of	monotone	
submodular functions	is	monotone	submodular



• We	have	shown	that	monotone	submodular
maximization	can	be	approximated	using	
greedy	selection

• To	show	that	maximizing	spread	of	cascading	
influence	can	be	approximated:
–We	will	show	that	the	function	is	monotone	and	
submodular



Cascades

• We	are	going	to	use	a	simplified	model



Cascade	in	independent	activation	
model

• If	node	u	activates	to	use	A,	then	u	causes	
neighbor	v	to	activate	and	use	A	with	probability	
pu,v
– E.g.	This probabilitymay depend on strength of	
friendship

• Now	suppose	u	has	been	activated
– Neighbor	v	will	be	activated	with	prob.	pu,v
– Neighbor	w	will	be	activated	with	prob.	pu,w etc..
– On	a	particular	trial,	on	activation	of	u,	a	certain	set	of	
other	nodes	will	be	activated.	
• (depending	on	random	choices in	that	trial.)



Cascade	in	independent	activation	
model

• Let	us	take	one	such	trial	activations	(call	it	X1).
• Tells	us	which	edges	of	u	are	“effective”	when	u	is	
“on”

• Similarly	for	other	nodes	v,	w,	y	….
• Gives	us	exactly	which	nodes	will	be	activated	as	
a	consequence	of	u	being	activated
– A	tree	rooted	at	u

• Say,	c(u)	is	the	set	of	nodes	covered by	u	in	X1
– The	nodes	in	the	activation	tree



• Say,	c(u)	is	the	set	of	nodes	covered	by	u.
• c(S)	is	the	set	of	nodes	covered	by	a	set	S
• f(S)	=	|c(S)|	is	submodular	



• Remember	that	we	had	made	the	probabilistic	choices	
for	each	edge	uv:

• That	is,	we	made	a	set	of	choices	representing	the	
entire	network

• We	used	X1	to	represent	this	configuration	

• We	showed	that	on	a	particular	trial	X1,	the	function	is	
submodular,	since	this	is	just	a	coverage	problem

• But	what	about	other	X?	
– Can	we	say	that	over	all	X	we	have	submodularity?



• We	sum	over	all	possible	Xi,	weighted	by	their	
probability.

• Non-negative	linear	combinations	of	submodular
functions	are	submodular,	
– Therefore	the	sum	of	all	x	is	submodular
– (homework!)

• The	approximation	algorithm	for	submodular
maximization	is	an	approximation	for	the	cascade	in	
independent	activation	model	with	same	factor



Linear	threshold	model

• Linear	contagion	threshold	model:
• The	model	we	have	used:	node	activates	to	
use	A	if	benefit	of	using	p	>	q

• Also	submodular and	monotone

• Proof	ommitted.
– If	you	are	interested,	see	additional	reading:	
Kempe,	Kleinberg,	Tardos; KDD03	



Applications	of	submodular
optimization

• Sensing	the	contagion
• Place	sensors	to	detect	the	spread
• Find	“representative	elements”:	Which	blogs	
cover	all	topics?

• Machine	learning	selection	of	sets
• Exemplar	based	clustering	(eg:	what	are	good	
seed	for	centers?)

• Image	segmentation



Sensing	the	contagion

• Consider	a	different	problem:	
• A	water	distribution	system	may	get	
contaminated

• We	want	to	place	sensors	such	that	
contamination	is	detected



Social	sensing
• Which	blogs	should	I	read?	Which	twitter	accounts	should	I	

follow?
– Catch	big	breaking	stories	early

• Detect	cascades
– Detect	large	cascades	
– Detect	them	early…
– With	few	sensors

• Can	be	seen	as	submodular optimization	problem:
– Maximize	the	“quality”	of	sensing

• Ref:	Krause,	Guestrin;	Submodularity and	its	application	in	optimized	 information	
gathering,	TIST	2011



Representative	elements

• Take	a	set	of	Big	data
• Most	of	these	may	be	
redundant	and	not	so	useful

• What	are	some	useful	
“representative	elements”?	
– Good	enough	sample	to	
understand	the	dataset

– Cluster	representatives
– Representative	images
– Few	blogs	that	cover	main	
areas…



Problem	with	submodular
maximization

• Can	be	expensive!
• Each	iteration	costs	O(n):	have	to	check	each	element	to	find	the	

best
– May	be	more:	“checks”	are	complex	and	depend	on	current	selection

• Problem	in	large	datasets
• Distributed	cluster	computation	can	help

– Split	data	into	multiple	computers
– Compute	and	merge	back	results:	Works	for	many	types	of	problems

• Ref:	Mirzasoleiman,	Karbasi,	Sarkar,	Krause;	Distributed	submodular maximization:	
Finding	 representative	elements	in	massive	data.	NIPS	2013.



Summary	
• Approximation	algorithms
• Critical	in	practical	scenario,	since	“perfect”	answer	may	be	

elusive
– We	can	find	approximations	without	even	knowing	the	OPT!

• Critical	in	Machine	learning
– Learning	is	always	approximate
– We	never	know	the	perfect	answer	for	future
– Learning	theory	relies	on	probability	and	approximations

• Submodular optimisations are	a	powerful	set	of	tools

• Notes	for	this	class	will	be	put	up



Next	class

• Prepare:	Web	graphs	and	search	

• Important:	Read	beforehand:	Kleinberg	&	Easley	
2010– Chapter	13	&	14.

• Look	up	on:	Representation	of	networks,	
Matrices,	adjacency	matrices,	matrix	
multiplication.	


