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Course

Make sure you are comfortable with graph
theory, exercise and notes sets 0 and 1.

And programming graphs, ipython etc

These are simple basics. We will build upon these
throughout

Important for theory, and coursework



Course

Piazza forum up at:
http://piazza.com/ed.ac.uk/fall2018/infr11124/

Please join. We will post announcements etc there.

Its main purpose is as a forum for you to discuss course
material

— Ask questionsand answer them. Post relevantthings

— We will answers some questions, not all (and we may be wrong!)
— Discussand find answers yourself

— Ifyou are not sure if youranswer is correct, try to articulate the
doubtexactly, and the search foranswers!



Unknown optimals

The final size of the cascade depends on the initial choice
of k nodes

Suppose the best possible choice gives us a cascade of size
OPT (short for optimal)

We do not know what OPT is
We do not know which starting set gives OPT

Computing the OPT or the OPT set is NP-hard

— Computationallyintractable. Takes exponential time. Almostas
bad as trying all possible starting sets.



Approximations

* Exact OPT solution is impractical

* |[n many cases a “good” solution will suffice.
We do not need the perfect solution

— As long as we can say what we mean by good

e Suppose we find an algorithm produces a
cascade of size c*OPT
— |t is a c-approximation
— E.g. 2 approximation reaches %2 of OPT nodes



* For the maximizing sphere of influence
problem, there is a simple algorithm that gives
an approximation of

(-5

* To prove this, we will use a property called
submodularity
— A fundamental conceptin machine learning



Example: Camera coverage

Suppose you are placing
sensors/cameras to monitor a
region (eg. cameras, or
chemical sensors etc)

There are n possible camera
locations

Each camera can “see” a region

A region that is in the view of
one or more sensors is covered

With a budget of k cameras,
we want to cover the largest
possible area

— Function f: Area covered



Marginal gains

e Observe:

* Marginal coverage
depends on other
sensors in the
selection



Marginal gains

e Observe:

* Marginal coverage
depends on other
sensors in the
selection



Marginal gains

Observe:

Marginal coverage
depends on other
sensors in the selection

More selected sensors
means less marginal
gain from each
individual

Exactly the same as
social sphere of
influence problem



Influences in networks

We are consideringsimple neighborhoods
— E.g. In the figure below, selection of node x covers the set of neighbors N(x)

A node can influence other nodesin its neighborhood: E.g. expose a friend
to a new product.

We are trying to maximize the number of people exposed to our product




Submodular functions
e Suppose function f(x)

represents the total benefit
of selecting x .
— Like area covered o
— And f(S) the benefit of
selecting set S
* Function fis submodular if:
SCT =

F(SU{z}) = f(5) = f(TU{z}) — F(T)



Submodular functions

 Means diminishing returns

* A selection of x gives .
smaller benefits if many o
other elements have been
selected

SCT =

F(SU{z}) = f(5) = f(TU{z}) — F(T)



Submodular functions

e Our Problem: select
locations set of size k that o
maximizes coverage o

* NP-Hard

SCT =

F(SU{z}) = f(5) = f(TU{z}) — F(T)



Greedy Approximation algorithm

Start with emptysetS=9
Repeat k times:

Find v that gives maximum marginal gain:

f(SUv}) = f(5)

Insertvinto S



* Observation 1: Coverage
function is submodular

* Observation 2: Coverage
function is monotone:

* Adding more sensors
always increases
coverage

SCT= f(S) < f(T)



Theorem

* For monotone submodular functions, the

greedy algorithm produces a (1 B 1)
approximation ‘

* That is, the value f(S) of the final set is at least

1
(1 — —) -OPT
— [Nemhauser et al. 1978] €

 (Note thatthisalgorithm appliesto submodular maximzation problems,
notto minimization)



Proof

OPT
|dea:

OPT is the max possible

At every step there is at

least one element that

covers at least 1/k of K
remaining:

— So 2(OPT - current) * 1/k

Greedy selects one such
element

current



Proof

e |dea:

e At each step coverage
remaining becomes

| 1
k o

 Of what was remaining after
previous step

OPT

current



Proof

e After k steps, we have
remaining coverage of OPT

AN
k e

 Fraction of OPT covered:

(-2)

1/k
next

OPT

current



Proof of the main claim

Suppose the unknown set of elements that gives OPT
is given by set C

And suppose S, is the set selected by greedy upto step i

At every step there is at least one element that covers
1/k of remaining:
— So (f(C) = f(S;)) * 1/k

Why is this true?



Proof of the main claim

* At every stepthereis at least one element
that covers 1/k of remaining:

— So (OPT - current) * 1/k

* At step O: Suppose to the contrary, there is no
such element.

— Then k cannot give OPT: contradiction.



Proof of the main claim

* AtS,, OPT has available at least on elementin

C that covers at least at least 1/k of the rest of
OPT

— Since we can simply add k elements from C to get
OPT

* Now consider Greedy

— If greedy chose s, at step i, that is because it gives
at least as much marginal gain as any element in C
* So, s;covers at least (f(C) — (S,))/k



Homework

* Write out the proof nicely!



e Theorem:

— Positive linear combinations of monotone
submodular functions is monotone submodular



 We have shown that monotone submodular
maximization can be approximated using
greedy selection

* To show that maximizing spread of cascading
influence can be approximated:

— We will show that the function is monotone and
submodular



Cascades

 We are going to use a simplified model



Cascade in independent activation
model

* |f node u activatesto use A, then u causes
neighbor v to activate and use A with probability

pu,v
— E.g. This probability may depend on strength of
friendship

* Now suppose u has been activated
— Neighbor v will be activated with prob. p,,
— Neighbor w will be activated with prob. p,, etc..

— On a particular trial, on activation of u, a certain set of
other nodes will be activated.

e (dependingon random choicesin that trial.)



Cascade in independent activation
model

Let us take one such trial activations (call it X1).
Tells us which edges of u are “effective” when u is

o 14

on
Similarly for other nodesv, w, vy ....

Gives us exactly which nodes will be activated as
a consequence of u being activated

— A treerootedat u

Say, c(u) is the set of nodes covered by u in X1
— The nodes in the activation tree



e Say, c(u) is the set of nodes covered by u.
e ¢(S)is the set of nodes covered by a setS
e f(S)=|c(S)|is submodular



Remember that we had made the probabilistic choices
for each edge uv:

That is, we made a set of choices representing the
entire network

We used X1 to represent this configuration

We showed that on a particular trial X1, the function is
submodular, since this is just a coverage problem

But what about other X?
— Can we say that over all X we have submodularity?



 We sum over all possible Xi, weighted by their
probability.

* Non-negative linear combinations of submodular
functions are submodular,

— Therefore the sum of all x is submodular
— (homework!)

* The approximation algorithm for submodular
maximization is an approximation for the cascade in
independent activation model with same factor



Linear threshold model

Linear contagion threshold model:

The model we have used: node activates to
use A if benefit of using p > q

Also submodular and monotone

Proof ommitted.

— If you are interested, see additional reading:
Kempe, Kleinberg, Tardos; KDD0O3



Applications of submodular
optimization

Sensing the contagion
Place sensors to detect the spread

Find “representative elements”: Which blogs
cover all topics?

Machine learning selection of sets

Exemplar based clustering (eg: what are good
seed for centers?)

Image segmentation



Sensing the contagion

* Consider a different problem:

* A water distribution system may get
contaminatec

 We want to place sensors such that
contamination is detected

(c) effective placement (d) poor placement




Social sensing

Which blogs should | read? Which twitter accounts should |
follow?

— Catch big breakingstories early

Detect cascades

— Detect large cascades

— Detect them early...

— With few sensors

Can be seen as submodular optimization problem:
— Maximize the “quality” of sensing

Ref: Krause, Guestrin; Submodularity and its application in optimized information
gathering, TIST 2011



Representative elements

Take a set of Big data

Most of these may be
redundant and not so useful

What are some useful
“representative elements”?

— Good enough sample to E
understand the dataset

W] e
— Cluster representatives g n E g :
— Representative images E H H i h

— Few blogs that cover main
areas...




Problem with submodular
maximization

Can be expensive!

Each iteration costs O(n): have to check each element to find the
best

— May be more: “checks” are complexand depend on current selection
Problemin large datasets
Distributed cluster computation can help

— Splitdatainto multiple computers
— Compute and merge back results: Works for many types of problems

Ref: Mirzasoleiman, Karbasi, Sarkar, Krause; Distributed submodular maximization:
Finding representative elements in massive data. NIPS 2013.



Summary

Approximation algorithms

Critical in practical scenario, since “perfect” answer may be
elusive

— We can find approximationswithout even knowing the OPT!
Critical in Machine learning

— Learningis always approximate
— We never know the perfect answer for future
— Learningtheory relies on probability and approximations

Submodular optimisations are a powerful set of tools

Notes for this class will be put up



Next class

* Prepare: Web graphs and search

* Important: Read beforehand: Kleinberg & Easley
2010— Chapter 13 & 14.

* Look up on: Representation of networks,
Matrices, adjacency matrices, matrix
multiplication.



