Kernel methods and Graph kernels

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2018.

Kernels

Kernels are a type of measures of similarity
mportant technique in Machine learning
Used to increase power of many techniques

Can be defined on graphs
Used to compare, classify, cluster many small
graphs

— E.g. Molecules, neighborhoods of different people
in social networks etc...

The main ML question

* Forclasses that can be
separated by a line
— ML s easy

— E.g. Linear SVM, Single
Neuron

 But what if the
separation is more
complex?

The main ML question

 Forclasses that can be
separated by a line

— ML s easy
— E.g. Linear SVM, Single
Neuron

 What if the structure is
more complex?

— Cannot separated

linearly

Lifting to higher dimensions

* Suppose we lift every (x,y) point
to

* (x,y) = (x,y,x*+y%):

* Now thereis a linear separator!

Exercise

* Suppose we have the following data:

oo o000 —0 009

 How would you lift and classify?

* Assuming there is a mechanism to find linear
separators if they exist

Kernels

* Asimilarity measure K: XXX — R is a kernel
if:

* Thereis an embedding y (usually to higher
dimension),
— Such that: K(u, v) = (¥ (u), p(v))
— Where (,) representsinner product
— Positive definite kernels

Example kernel

* Forthe examples we saw earlier, the following
kernel helps:

e K(u,v) = (u-v)?

Example kernel

* Forthe examples we saw earlier, the following
kernel helps:

e K(u,v) = (u-v)?
— This is true with lifting map
Y(w) = (uZ V2 ueuy, u?)

— Try it out!

More examples

Polynnomial Kernel
K(u,v) = (1 + (u-v))-

Gaussian Kernel

Kuv)=e 20

— Sometimes called Radial
Basis Function (RBF)

kernel

+ $ 5
+ Wt ¥ o Ao
iy ot Hy P T+ H
|u_v|2 TN $++*f$ﬁ+*:#*+f+ 4 ¥, ®f + +
08 + . -H-_"_!;. + ‘i + + % P "‘H't +
ﬁ + ‘ﬁ* L + '+ e + \I.H- A +
o ®F g L ok T
e B fooo B\ g E o
) Fraw S . +++4+r| o o N ++w:r+:
‘\ () + ', e |
o k FJop@9% X :‘* RIS
+-Hf' ;f’i > : "1%1 0 o0 "'f) o k#'(t _,,_/—"_'
4 g 2 b S
£y BT P w80 o o Bon st
T B ©q "B G PR,
+ 4 - ' e
+ . , 5% .
06f ? Iﬁi#t"‘ 0 ° g rﬁffﬁ“‘-] .
+ +)
e 3}4 . SE T] : g’++}+
+ ++'.f'-_';_+ ".". { IJ ++ _F’,._#. ..!} F
i, {ﬁ- -1 . P A 3 /-WI— X I*‘-& +4
0 + J ~ + .
* +H [I i ey & .‘F"++
+* 4t . N
+ £ + | + .
+i iy 4
04 1 .|.+|J L l[-ﬂ-l((-il | L |+t T
0 o1 02 03 04 05 06 07 08 08 1

Graph kernels

* To compute similarity between two attributed
graphs

— Nodes can carry labels
— E.g. Elements (C, N, H etc) in complex molecules

* |dea: It is not obvious how to compare two
graphs

— Instead compute walks, cycles etc on the graph,
and compare those

Walk counting

* Countthe number of walks of length k from i
to |

* |dea:iand jshould be considered close if
— Theyare not far in the shortest path distance

— And there are many walks of short length
between them (so they are highly connected)

e So, there would be many walks of length < k

Walk counting

e Can be computed by taking kt" power of
adjacency matrix A

* If A*(i,j) = c, that means there are c walks
of length k between i and |

 Note: A% is expensive, but manageable for
small graphs

Common walk kernel

 Count how many walks are common betweenthe
two graphs

* Thatis, take all possible walks of length k on both
graphs.
— Count the number that are exactly the same

— Two walks are same if the follow the same sequence

of labels

e (note that other than labels, there is no obvious
correspondence between nodes)

Random walk kernel

* Perform multiple random walks of length k on
both graphs

* Count the number of walks common to both
graphs

Tottering

 Walks can move back and forth between
adjacent vertices

— Small structural similarities can produce a large
score

* Usual technique: for a walk v4, v,, ... prohibit
return along an edge, ie v; = v; 4,

Subtree kernel

* From each node, compute a neighborhood
upto distance h

* From every pair of nodes in two graphs,
compare the neighborhoods

— And countthe number of matches

Shortest path kernel

Compute all pairs shortest paths in two graphs
Computethe number of common sequences

Tottering problem does not appear

Problem: there can be many (exponentially
many) shortest paths between two nodes

— Computational problems
— Can bias the similairity

Shortest distance kernel

 |Instead use shortest distance between nodes
* Alwaysunique

e Method:

— Compute all shortest distances SD(G1) and SD(G2) in
graphs G1 and G2

— Define kernel (e.g. Gaussian kernel) over pairs of distances:
k(s{,S;), wheres; € SD(Gy),s, € SD(G,)

— Define shortest path (SP)kernel between graphs as sum of
kernel values over all pairs of distances between two
graphs

* Kop(G1,Gz) = Zsl Zsz k(s1,52)

