
Kernel	methods	and	Graph	kernels

Social	and	Technological	Networks

Rik Sarkar

University	of	Edinburgh,	2018.



Kernels

• Kernels	are	a	type	of	measures	of	similarity
• Important	technique	in	Machine	learning
• Used	to	increase	power	of	many	techniques

• Can	be	defined	on	graphs
• Used	to	compare,	classify,	cluster	many	small	
graphs
– E.g.	Molecules,	neighborhoods	of	different	people	
in	social	networks	etc…



The	main	ML	question

• For	classes	that	can	be	
separated	by	a	line
–ML	is	easy
– E.g.	Linear	SVM,	Single	
Neuron

• But	what	if	the	
separation	is	more	
complex?	



The	main	ML	question	

• For	classes	that	can	be	
separated	by	a	line
–ML	is	easy
– E.g.	Linear	SVM,	Single	
Neuron

• What	if	the	structure	is	
more	complex?
– Cannot	separated	
linearly



Lifting	to	higher	dimensions

• Suppose	we	lift	every	(x,y)	point	
to	

• 𝑥, 𝑦 → (𝑥, 𝑦, x' + y') :	

• Now	there	is	a	linear	separator!	



Exercise

• Suppose	we	have	the	following	data:

• How	would	you	lift	and	classify?

• Assuming	there	is	a	mechanism	to	find	linear	
separators	if	they	exist



Kernels

• A	similarity	measure	𝐾:𝑋×𝑋 → ℝ is	a	kernel	
if:

• There	is	an	embedding	𝜓 (usually	to	higher	
dimension),	
– Such	that:	K 𝒖, 𝒗 = ⟨𝜓 𝒖 ,𝜓 𝒗 ⟩
–Where	⟨, ⟩ represents	inner	product
– Positive	definite	kernels



Example	kernel

• For	the	examples	we	saw	earlier,	the	following	
kernel	helps:

• 𝐾 𝑢, 𝑣 = 𝑢 ⋅ 𝑣 '



Example	kernel

• For	the	examples	we	saw	earlier,	the	following	
kernel	helps:

• 𝐾 𝑢, 𝑣 = 𝑢 ⋅ 𝑣 '

– This	is	true	with	lifting	map	
𝜓 𝑢 = 𝑢:', 2	𝑢:𝑢=,𝑢>'

– Try	it	out!



More	examples

• Polynnomial	Kernel
• 𝐾 𝑢, 𝑣 = (1 + 𝑢 ⋅ 𝑣 )I

• Gaussian	Kernel

• 𝐾 𝑢, 𝑣 = 𝑒K
LMN O

OP

– Sometimes	called	Radial	
Basis	Function	(RBF)	
kernel



Graph	kernels

• To	compute	similarity	between	two	attributed	
graphs
– Nodes	can	carry	labels
– E.g.	Elements	(C,	N,	H	etc)	in	complex	molecules

• Idea:	It	is	not	obvious	how	to	compare	two	
graphs
– Instead	compute	walks,	cycles	etc on	the	graph,	
and	compare	those



Walk	counting

• Count	the	number	of	walks	of	length	k	from	i
to	j

• Idea:	i and	j	should	be	considered	close	if
– They	are	not	far	in	the	shortest	path	distance
– And	there	are	many	walks	of	short	length	
between	them	(so	they	are	highly	connected)

• So,	there	would	be	many	walks	of	length	≤ 𝑘



Walk	counting

• Can	be	computed	by	taking	kth power	of	
adjacency	matrix	A

• If	𝐴I 𝑖, 𝑗 = 𝑐 ,	that	means	there	are	c	walks	
of	length	k	between	i and	j

• Note:	𝐴I is	expensive,	but	manageable	for	
small	graphs



Common	walk	kernel

• Count	how	many	walks	are	common	between	the	
two	graphs

• That	is,	take	all	possible	walks	of	length	k	on	both	
graphs.
– Count	the	number	that	are	exactly	the	same
– Two	walks	are	same	if	the	follow	 the	same	sequence	
of	labels
• (note	that	other	than	labels,	there	is	no	obvious	
correspondence	between	nodes)



Random	walk	kernel

• Perform	multiple	random	walks	of	length	k	on	
both	graphs

• Count	the	number	of	walks	common	to	both	
graphs



Tottering

• Walks	can	move	back	and	forth	between	
adjacent	vertices
– Small	structural	similarities	can	produce	a	large	
score	

• Usual	technique:	for	a	walk	𝑣W, 𝑣', … prohibit	
return	along	an	edge,	ie 𝑣Y = 𝑣YZ'	



Subtree kernel

• From	each	node,	compute	a	neighborhood	
upto distance	h

• From	every	pair	of	nodes	in	two	graphs,	
compare	the	neighborhoods
– And	count	the	number	of	matches



Shortest	path	kernel

• Compute	all	pairs	shortest	paths	in	two	graphs
• Compute	the	number	of	common	sequences

• Tottering	problem	does	not	appear

• Problem:	there	can	be	many	(exponentially	
many)	shortest	paths	between	two	nodes
– Computational	 problems
– Can	bias	the	similairity



Shortest	distance	kernel
• Instead	use	shortest	distance	between	nodes
• Always	unique

• Method:	
– Compute	all	shortest	distances	SD(G1)	and	SD(G2)	in	
graphs	G1	and	G2

– Define	kernel	 (e.g.	Gaussian	kernel)	over	pairs	of	distances:	
𝑘 𝑠W, 𝑠' , where	𝑠W ∈ 𝑆𝐷 𝐺W , 𝑠' ∈ 𝑆𝐷(𝐺')

– Define	shortest	path	(SP	)kernel	between	 graphs	as	sum	of	
kernel	values	over	all	pairs	of	distances	between	two	
graphs
• 	K`a 𝐺W, 𝐺' = ∑ ∑ 𝑘(𝑠W, 𝑠')cOcd 	


