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Webpage

Check it regularly
Announcements

Lecture slides, reading material
Do exercises 1.



Today

Some basics of graph theory
— Wikipedia is a good resource for basics

Typical types of graphs & networks
What are random graphs?

— How can we define “random graphs”?

Some properties of random graphs



Graph

V: set of nodes
n=|V| : Number of nodes

E: set of edges
m=]|E| : Number of edges

If edge a-b exists, then a and b are called
neighbors



Walks

* A sequence of vertices V1, V2,73, ...
* Where successive vertices are neighbors
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Paths

* Walks without any repeated vertex




Exercises

* At most how many walks there can be on a
graph?

* At most how many paths can there be on a
graph?



Cycle

A walk with the same start and end vertex
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Subgraph of G

A graph H with a subset of vertices and edges
of G

— Of course, for any edge (a,b) in H, verticesaand b
must also be in H

« Subgraph induced by a subset of vertices X C V'

— Graph with vertices X and edges between nodes in
X



Connected component

* Asubgraph where
— Any two vertices are connected by a path
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* A connected graph

— Only 1 connected component



Graph

* How many edges can a graph have?



Graph

* How many edges can a graph have?

(Z) on n(nz— 1)

* |[n big O?



Graph

* How many edges can a graph have?

(n> op =1
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O(n?)



Some typical graphs

* Complete graph
— All possible edges exist

* Tree graphs
— Connected graphs
— Do not contain cycles



Typical graphs
e Star graphs
ok

e Bipartite graphs

— Vertices in 2 partitions

— No edge in the same partition



Typical graphs

* Grids (finite) o o .

— 1D grid (or chain, or path)

— 2D grid

— 3D grid




Random graphs

* Most basic, most unstructured graphs

e Forms a baseline

— What happens in absence of any influences
* Social and technological forces

* Many real networks have a random
component
— Many things happen without clear reason



Erdos — Renyi Random graphs




Erdos — Renyi Random graphs

G(n,p)

* n: number of vertices
e p: probability that any particular edge exists

e Take V with n vertices

* Consider each possible edge. Add it to E with
probability p



Expected number of edges

* Expected total number of edges

* Expected number of edges at any vertex



Expected number of edges

* Expected total number of edges (g)p

* Expected number of edges at any vertex

(n—1)p



Expected number of edges

C

 For p:n—l

* The expected degree of a nodeis : ?



|Isolated vertices

* How likely is it that the graph has isolated
vertices?



|Isolated vertices

* How likely is it that the graph has isolated
vertices?

 What happens to the number of isolated
vertices as p increases?



Probability of Isolated vertices

|Isolated vertices are

Likely when:

Unlikely when:

Let’s deduce

p <

p >



Useful inequalities



Union bound

* Forevents A, B, C...

e Pr[AorBorC...] <Pr[A] + Pr[B] + Pr[C] +...



* Theorem 1:

]
cIf p=(1-+e¢) "

n—1

* Then the probability that there exists an

isolated vertex 1
<
= e



Terminology of high probability

Something happens with high probability if

1
Prlevent| > (1 >
poly(n)
Where poly(n) means a polynomial in n

A polynomial in n is considered reasonably ‘large
— Whereas something like log n is considered ‘small’
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Thus for large n, w.h.p there is no isolated vertex
Expected number of isolated vertices is miniscule



* Theorem 2

I
* For p= (1 —¢) e

n—1

* Probability that vertex v is isolated >
— (Qn)l—e



Theorem 2

I
For p= (1 —¢) e

n—1

Probability that vertex v is isolated >

= (2n)1—¢

Expected number of isolated vertices:
n n

€

>
= (2n)i—¢ 2

Polynomial in n



Threshold phenomenon: Probability or
number of isolated vertices

* The tipping point, phase transition

# Isolated vertices

e Common in many real systems



Clustering in social networks

People with mutual friends are often friends

If A and C have a common friend B
— Edges AB and BC exist

Then ABC is said to form a Triad

— Closed triad : Edge AC also exists
— Open triad: Edge AC does not exist

Exercise: Prove that any connected graph has at
least n triads (considering both open and closed).



Clustering coefficient (cc)

Measures how tight the friend neighborhoods
are: frequency of closed triads

cc(A) fractions of pairs of A’s neighbors that
are friends

Average cc : average of cc of all nodes

Global cc : ratio # closed triads
# all triads




Global CCin ER graphs

 What happens when p is very
small (almost 0)?

* What happens when p is very
large (almost 1)?



Global CCin ER graphs

 What happens at the tipping point?



Theorem

Inn
* For p=cCc——-
n

* Global ccin ER graphs is vanishingly small

, . # closed triads
1 — 1 p—
dm ce(G) = lm e rads




Avg CC In real networks

* Facebook (old data) ~ 0.6

e https://snap.stanford.edu/data/egonets-
Facebook.html

* Google web graph ~0.5
e https://snap.stanford.edu/data/web-Google.html

* |In general, ccof ¥ 0.2 or 0.3 is considered
‘high’
— that the network has significant clustering/
community structure



