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Project

* Proposal feedback today/tomorrow
— Please share with your teammates!

* Project guidelines and tips are up on the web
Page



Project - teams

Brainstorm in teams. Submit your own project

The team is to help you think about the
project, discuss specific issues

Treat your teammate’s project as any other
book or paper - you can reference/use it, but
cannot claim credit!

You are free to discuss with anybody. Give
credit for significant ideas.



Project -- writing

Do not keep it for the end!

As you go, put in plots, pictures, diagrams in the
document. You can change/remove them later

Put in small paragraphs, descriptions as they
occur to you - you will not remember this on the

last day.

Remember the thoughts, discussions, problems,
ideas as you go along. This will help you to write
an interesting report.
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Topics

* Are there topics you would like disucssed in
class? Let me know on Piazza



Spectral methods

Understanding a graph using eigen values and
eigen vectors of the matrix

We saw:

Ranks of web pages: components of 1st eigen
vector of suitable matrix

Pagerank or HITS are algorithms designed to
compute the eigen vector

Today: other ways spectral methods help in
network analysis



e L=D—-A [Disthe diagonal matrix of degrees]

* An eigen vector has one value for each node
 We are interested in properties of these

values
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Laplacian

L=D—-A [Disthe diagonal matrix of degrees]

Symmetric. Real Eigen values.
Row sum=0. Singular matrix. At least one eigen
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Positive semidefinite. Non-negative eigen values




Application 1: Drawing a graph
(Embedding)

Problem: Computer does
. o ® ° o )
not know what a graph is
. ® L 2 L 2 2 Q
supposed to look like
® L L 2 2 Q
A graph is a jumble of
edges _
== . AR
Consider a grid graph: Q,'e.'i‘ TR
We want it drawn nicely ‘.}v.';:;g'-.,gﬁ’




Graph embedding

* Find positions for vertices of a graph in low
dimension (compared to n)

e Common objective: Preserve some properties of
the graph e.g. approximate distances between
vertices. Create a metric

— Useful in visualization
— Finding approximate distances
— Clustering
* Using eigen vectors
— One eigen vector gives x values of nodes
— Other gives y-values of nodes ... etc



Draw with v[1] and v|2]

e Suppose v[0], v[1], v[2]...
are eigen vectors

— Sorted by increasing eigen
values

* Plot graph using X=v[1],
Y=v[2]

* Produces the grid



Intuitions: the 1-D case

Suppose we take the jth eigen vector of a
chain

What would that look like?
We are going to plot the chain along x-axis

The y axis will have the value of the node in
the jth eigen vector

We want to see how these rise and fall
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Observations

* InDim 1 grid:

— v[1] is monotone

— v[2] is not monotone
* Indim 2 grid:

— both v[1] and v[2] are
monotone in suitable
directions

* For low values of j:

— Nearby nodes have similar
values
e Useful for embedding




Application 2: Colouring

* Colouring: Assign coloursto 2 /A A /\ /\ /\ /\ A A
vertices, such that vy \/ \/ \/ \/ TRY
neighboring vertices do not
have same colour
— E.g. Assignment of radio

channels to wireless nodes.

Good colouring reduces
interference

* |dea: High eigen vectors give
dissimilar values to nearby
nodes

* Use for colouring!




Application 3: Cuts/segmentation/
clustering

 Find the smallest ‘cut’

* A small set of edges
whose removal
disconnects the graph

* Clustering, community
detection...




Clustering/community detection

e v[1] tends to stretch
the narrow
connections:

discriminates %
different

communities




Clustering: community detection

More communities

Spectral embedding
needs higher
dimensions

Warning: it does not
always work so cleanly

In this case, the data
IS very symmetric




Image segmentation

Shi & malik 00

weight(i, j) ~ e~ (PTi P )?




Laplacian matrix

Imagine a small and different quantity of heat
at each node (say, in a metal mesh)

we write a function u: u(i) = heat at |
This heat will spread through the mesh/graph

Question: how much heat will each node have
after a small amount of time?

“heat” can be representative of the
probability of a random walk being there



Heat diffusion

* Suppose nodes i and jare neighbors
— How much heat will flow fromitoj?



Heat diffusion

* Suppose nodes i and j are neighbors
* How much heat will flow fromitoj?
* Proportional to the gradient:

— u(i) - u(j)

— this is signed: negative means heat flows into i



Heat diffusion

* |fihas neighborsjl, j2....

 Then heat flowing out of i is:
= u(i) - u(j1) + u(i) - u(j2) + u(i) - u(j3) + ...
= degree(i)*u(i) - u(j1) - u(j2) - u(j3) - ....

* HencelL=D-A
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The heat equation

ou
5 L(u)

 The net heat flow out of nodes in a time step

* The change in heat distribution in a small time
step

— The rate of change of heat distribution



The smooth heat equation

* The smooth Laplacian:
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* The smooth heat equation:
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Heat flow

* Will eventually converge to
v[0] : the zeroth eigen
vector, with eigen value \j = ()

e v[0] is a constant: no more
flow!

v[0] = const



Laplacian

 Changed implied by L on any
input vector can be represented
by sum of action of its eigen
vectors (we saw this last time
for MMT)

e v[0] is the slowest component
of the change
— With multiplier A,;=0

* v[1] is slowest non-zero
component
— with multiplier A,



Spectral gap
A - A,

Determines the overall speed of change

If the slowest component v[1] changes fast
— Then overall the values must be changing fast
— Fast diffusion

If the slowest component is slow

— Convergence will be slow

Examples:

— Expanders have large spectral gaps

— Grids and dumbbells have small gaps ~ 1/n



Application 4: isomorphism testing

e Eigen values different implies graphs are
different

 Though not necessarily the other way



Spectral methods

Wide applicability inside and outside networks

Related to many fundamental concepts
— PCA
— SVD

Random walks, diffusion, heat equation...

Results are good many times, but not always
Relatively to prove properties

Inefficient: eig. computation costly on large matrix

(Somewhat) efficient methods exist for more restricted
problems

— e.g. when we want only a few smallest/largest eigen vectors



