Clustering and community detection

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2017.

* Plan/proposal guidelines are up

e Office hours
— Wednesdays 12:00 — 13:00

— (May change in future. Always check web page for
times and announcements.)

Community detection

e Given a network

 What are the “communities”
— Closely connected groups of nodes
— Relatively few edges to outside the community

e Similar to clustering in data sets

— Group together points that are more close or
similar to each other than other points

Community detection by clustering

* First, define a metric between nodes

— Either compute intrinsic metrics like all pairs
shortest paths [Floyd-Warshall algorithm O(n3)]

— Or embed the nodes in a Euclidean space, and use
the metric there

* We will later study embedding methods
* Apply a clustering algorithm with the metric

Clustering

* A core problem of machine learning:
— Which items are in the same group?

* |dentifies items that are similar relative to rest
of data

* Simplifies information by grouping similar
items
— Helps in all types of other problems

Clustering

e Qutline approach:

e Given a set of items

— Define a distance between them

* E.g. Euclidean distance between points in a plane; Euclidean
distance between other attributes; non-euclidean distances; path
lengths in a network; tie strengths in a network...

— Determine a grouping (partitioning) that optimises some
function (prefers ‘close’ items in same group).

 Reference for clustering:
— Charu Aggarwal: The Data Mining Textbook, Springer

* Free on Springer site (from university network)
— Blum et al. Foundations of Data Science (free online)

K-means clustering
* Find k-clusters C = {C4,...,C:}
— With centers cCq,...,Cg,

— That minimize the sum of squared distances of
nodes to their clusters (called the k-means cost)

k
(I)kmeans(c) — >: >: dz(a'éacj>

71=1 aq;ECj

K-means clustering: Lloyd’s algorithm

There are n items

Select k ‘centers’
— May be random k locations in space

— May be location of k of the items selected randomly
— May be chosen according to some method

lterate till convergence:

— Assign each item to the cluster for its closest center

— Recompute location of center as the mean location of all
elements in the cluster

— Repeat

Warning: Lloyd’s algorithm is a Heuristic. Does not
guarantee that the k-means cost is minimised

K-means

 \/isualisations

e http://stanford.edu/class/eel03/
visualizations/kmeans/kmeans.html

e http://shabal.in/visuals/kmeans/1.html

K-means

 Ward’s algorithm (also Heuristic)
— Start with each node as its own cluster

— At each round, find two clusters such that merging
them will reduce the k-means cost the most

— Merge these two clusters
— Repeat until there are k-clusters

K means: discussion

Tries to minimise sum of distances of items to cluster
centers

— Computationally hard problem

— Algorithm gives local optimum

Depends on initialisation (starting set of centers)

— Can give poor results

— Slow speed
The right ‘k” may be unknown

— Possible strategy: try different possibilities and take the best
Can be improved by heuristics like choosing centers
carefully

— E.g. choosing centers to be as far apart as possible: choose one,
choose point farthest to it, choose point farthest to both
(maximise min distance to existing set etc)...

— Try multiple times and take best result..

K-medoids

* Similar, but now each center must be one of
the given items

— In each cluster, find the item that is the best
‘center’ and repeat

e Useful when there is no ambient space
(extrinsic metric)

— E.g. A distance between items can be computed
between nodes, but they are not in any particular
Euclidean space, so the ‘center’ is not a
meaningful point

Other center based methods

e K-center: Minimise maximum distance to

Center (I)kcente'r' (C) — mkaX lax d(ai’ Cj)
j=1 a;eC;

e K-median: Minimise sum of distances:
k
(I)kmedian(c) — Z Z d(aiacj)

j=1 a;€C}

Hierarchical clustering

* Hierarchically group items

Hierarchical clustering

 Top down (divisive):

— Start with everythingin 1
cluster

— Make the best division, and
repeat in each subcluster

* Bottom up (agglomerative):
— Start with n different clusters (a) Dendrogram

— Merge two at a time by
finding pairs that give the
best improvement

Hierarchical clustering

* Gives many options for a
flat clustering

* Problem: what is a good
‘cut’ of the dendogram?

A B cbD E F

(a) Dendrogram

m—
—

(a) Dendrogram

Density based clustering

* Group dense regions

a7
tO ethe I e fid, -
RN CR LT
a3] .-.l; o 3 y 20 ¢
,-.'q::_ S . ..j"".a_'.‘
A~ g oo a0 L
» e w2
- -c * . "- *
. P20

e Better at non-linear
separations

e Works with unknown

number of clusters o, B,

°® ® ' Y
..o ° ."
S o,

DBSCAN

— Number of data points within radius Eps

A core point:

— Point with density at least t
Border point

— Density less than T, but at least one core point within radius Eps
Noise point

— Neither core nor border. Far from dense regions

Algorithm DBSCAN(Data: D, Radius: Eps, Density: 7)
begin
Determine core, border and noise points of D at level (Eps, 7);
Create graph in which core points are connected
if they are within E'ps of one another;
Determine connected components in graph;
Assign each border point to connected component
with which it is best connected;
return points in each connected component as a cluster;
end

DBSCAN: Discussions

* Requires knowledge of suitable radius and
density parameters (Eps and 1)

* Does not allow for possibility that different
clusters may have different densities

12
1}
10 oot
ol o T " CLUSTERC
’ : e
.
6L
5 S R
£ 5% . CLUSTERB
al S SO
3 “v}fﬁf"CLUSTER A
)
n

Density based clustering

* Single linkage (same as Kruskal’s MIST
algorithm)
— Start with n clusters

— Merge two clusters with the shortest bridging link
— Repeat until k clusters

e Other, more robust methods exist

Communities

Groups of friends
Colleagues/collaborators
Web pages on similar topics
Biological reaction groups
Similar customers/users ...

Other applications

A coarser representation of networks

One or more meta-node for each community
ldentify bridges/weak-links

Structural holes

Community detection in networks

* Asimple strategy:

— Choose a suitable distance measure based on

available data

* E.g. Path lengths; distance based on inverse tie
strengths; size of largest enclosing group or common
attribute; distance in a spectral (eigenvector)
embedding; etc..

— Apply a standard clustering algorithm

Clustering is not always suitable in
networks

* Small world networks have small diameter
— And sometime integer distances

— A distance based method does not have a lot of
option to represent similarities/dissimilarities

* High degree nodes are common
— Connect different communities
— Hard to separate communities
* Edge densities vary across the network
— Same threshold does not work well everywhere

Definitions of communities

* Varies. Depending on application

* General idea: Dense subgraphs: More links
within community, few links outside

 Some types and considerations:

— Partitions: Each node in exactly one community

— Overlapping: Each node can be in multiple
communities

Finding dense subgraphs is hard in
general

* Finding largest clique
— NP-hard
— Computationally intractable
— Polynomial time (efficient) algorithms unlikely to exist

e Decision version: Does a clique of size k exist?
— NP-complete
— Computationally intractable
— Polynomial time (efficient) algorithms unlikely to exist

Dense subgraphs: Few preliminary
definitions

For S, T subgraphs of V

e(S,T): Set of edges fromSto T

— e(S) = e(S,S): Edges within S

d<(v) : number of edges from v to S

Edge density of S: [e(S)|/|S]|

— Largest for complete graphs or cliques

Dense subgraph

The subgraph with largest edge density
There also exists a decision version:
— |s there a subgraph with edge density > a

Can be solved using Max Flow algorithms
— O(n2m) : inefficient in large datasets
— Finds the one densest subgraph

Variant: Find densest S containing given subset X
Other versions: Find subgraphs size k or less
NP-hard

Efficient approximation for finding

dense S containing X

Let G,, — G .

for £k = n downto | X|+1 do
Let v ¢ X be the lowest degree node in G \ X.
Let Gk—l — Gk \ {’U}

Output the densest subgraph among G, ...,G x|

* Gives a 1/2 approximation

 Edge density of output S set is at least half of
optimal set S§*

* (Proofin Kempe 2011).

Modularity

We want to find the many communities, not
just one

Clustering a graph
Problem: What is the right clustering?
ldea: Maximize a quantity called modularity

Modularity of subset S

* Given graph G

* Consider a random G’ graph with same node
degrees (remember configuration model)
— Number of edges in Sin G: |e(S)|¢
— Expected number of edges in Sin G”: E[| e(S) | 5]
— Modularity of S: |e(S)]| - E[|e(S)]|]

— More coherent communities have more edges inside
than would be expected in a random graph with same
degrees

— Note: modularity can be negative

Modularity of a clustering

Take a partition (clustering) of V: P = {S4,....

7Sk}

Write d(S;) for sum of degrees of all nodes in S,

Can be shown that E[|e(S)]] ~ d(S;)?
Definition: Sum over the partition:

_Z|e

|——d

i)’

Modularity based clustering

Modularity is meant for use more as a measure of quality, not so
much as a clustering method

Finding clustering with highest modularity is NP-hard
Heuristic:

— Use modularity matrix

— Take its first eigen vector

Note: Modularity is a relative measure for comparing community
structure.

Not entirely clear in which cases it may or may not give good
results

A threshold of 0.3 or more is sometimes considered to give good
clustering

e Can be used as a stopping criterion (or finding
right level of partitioning) in other methods

— Eg. Girvan-newman

Karate club hierarchic clustering

* Shape of nodes gives actual split in the club

due to internal conflicts
— Newman 2003

 —1

.

r——

L1

|/

O000000000000000
1 6177 51112202 182214 4138 3 10 2319161521 9 3133292526322427 303428

Overlapping communities

High schoo Summer
: internship

Nodes: Facebook Users
Edqes: Friendships

= Non-overlapping vs. overlapping communities

Non-Overlapping communities

Nodes
000000000000

Nodes
3> 000000000000

Network djacency matrix

Overlapping communities

v

Affiliation graph model

Communities,C p A_. Do

Model
Memberships, M
Nodes,V © © O O

Model Network

* Generative model:
* Each node belongs to some communities

* |f both aand b arein community ¢
— Edge (a, b) is created with probability p,

Affiliation graph model

Model Network

Communities,C p] 2=

Memberships, M

Nodes,V © 00O

* Problem:

* Given the network, recover:
— Communities: C
— Memberships or Affiliations: M

* Probabilities: p.

= AGM can express a
variety of community
structures:
Non-overlapping,
Overlapping, Nested

Maximum likelihood estimation

Given data X

Assume data is generated by some model f
with parameters ©

Express probability P[f(X| ©)]: f generates X,
given specific values of ©.

Compute argmaxg (P[f(X]| ©)])

MLE for AGM: The BIGCLAM method

* Finding the best possible bipartite network is
computationally hard (too many possibilities)

* Instead, take a model where memberships are
real numbers: Membership strengths
— F_ Strength of membership of uin A
— P,(u,v) = 1 - exp(-F,,.F) : Each community links
independently, by product of strengths

— Total probability of an edge existing:
* P(u,v)=1-MN121-P(u,v))

BIGCLAM

Find the F that maximizes the likelihood that
exactly the right set of edges exist.

Details Omitted

Optionally, See

Overlapping Community Detection at Scale: A
Nonnegative Matrix Factorization Approach by J.

Yang, J. Leskovec. ACM International Conference

on Web Search and Data Mining (WSDM), 2013.

Correlation clustering

Some edges are known to
be similar/friends/trusted

marked “+”

Some edges are known to
be dissimilar/enemies/
distrusted

marked “-”

Maximize the number of +
edges inside clusters and

Maximize the number of -
edges between clusters

Applications

* Community detection based on similar
people/users

* Document clustering based on known
similarity or dissimilarity between documents

Features

Clustering without need to know number of clusters

— k-means, medians, clusters etc need to know number of
clusters or other parameters like threshold

— Number of clusters depends on network structure
Actually, does not need any parameter
NP hard

Note that graph may be complete or not complete

— In some applications with unlabeled edges, it may be
reasonable to change edges to “+” edges and non-edges to

o

-” edges

Approximation

* Naive 1/2 approximation (not very useful):

— If there are more + edges
e Putthem all in 1 cluster

— If there are more - edges
e Put nodes in n different clusters

Better approximations

e 2 ways of looking at it:
— Maximize agreement or Minimize disagreement
— Similar idea, but we know different approximation
algorithms

* Nikhil Bansal et al. develop PTAS (polynomial
time approximation scheme) for maximizing
agreement:

— (1-€) approximation, running time O(n2e®(1/€))

Approximation

* Min-disagree:
— 4-approximation

