
Clustering	and	community	detec2on	
	

Social	and	Technological	Networks	

Rik	Sarkar	
	

University	of	Edinburgh,	2017.	

•  Plan/proposal	guidelines	are	up	
•  Office	hours	
– Wednesdays	12:00	–	13:00	
–  (May	change	in	future.	Always	check	web	page	for	
2mes	and	announcements.)	

Community	detec2on	

•  Given	a	network		
•  What	are	the	“communi2es”	
– Closely	connected	groups	of	nodes	
– Rela2vely	few	edges	to	outside	the	community	

•  Similar	to	clustering	in	data	sets	
– Group	together	points	that	are	more	close	or	
similar	to	each	other	than	other	points	

Community	detec2on		by	clustering	

•  First,	define	a	metric	between	nodes	
– Either	compute	intrinsic	metrics	like	all	pairs	
shortest	paths	[Floyd-Warshall	algorithm	O(n3)]	

– Or	embed	the	nodes	in	a	Euclidean	space,	and	use	
the	metric	there	
• We	will	later	study	embedding	methods	

•  Apply	a	clustering	algorithm	with	the	metric	

Clustering	

•  A	core	problem	of	machine	learning:	
– Which	items	are	in	the	same	group?	

•  Iden2fies	items	that	are	similar	rela2ve	to	rest	
of	data	

•  Simplifies	informa2on	by	grouping	similar	
items	
– Helps	in	all	types	of	other	problems	

Clustering	
•  Outline	approach:	
•  Given	a	set	of	items	

–  Define	a	distance	between	them	
•  E.g.	Euclidean	distance	between	points	in	a	plane;	Euclidean	
distance	between	other	a_ributes;	non-euclidean	distances;	path	
lengths	in	a	network;	2e	strengths	in	a	network…	

–  Determine	a	grouping	(par22oning)	that	op2mises	some	
func2on	(prefers	‘close’	items	in	same	group).	

•  Reference	for	clustering:		
–  Charu	Aggarwal:	The	Data	Mining	Textbook,	Springer	

•  Free	on	Springer	site	(from	university	network)	
–  Blum	et	al.	Founda2ons	of	Data	Science	(free	online)	

K-means	clustering	

•  Find	k-clusters	

– With	centers		

– That	minimize	the	sum	of	squared	distances	of	
nodes	to	their	clusters	(called	the	k-means	cost)	

K-means	clustering:	Lloyd’s	algorithm	

•  There	are	n	items	
•  Select	k	‘centers’		

– May	be	random	k	loca2ons	in	space	
– May	be	loca2on	of	k	of	the	items	selected	randomly		
– May	be	chosen	according	to	some	method	

•  Iterate	2ll	convergence:		
–  Assign	each	item	to	the	cluster	for	its	closest	center	
–  Recompute	loca2on	of	center	as	the	mean	loca2on	of	all	
elements	in	the	cluster	

–  Repeat		
•  Warning:	Lloyd’s	algorithm	is	a	Heuris2c.	Does	not	
guarantee	that	the	k-means	cost	is	minimised	

K-means		

•  Visualisa2ons	
•  h_p://stanford.edu/class/ee103/
visualiza2ons/kmeans/kmeans.html	

•  h_p://shabal.in/visuals/kmeans/1.html		

K-means	

•  Ward’s	algorithm	(also	Heuris2c)	
– Start	with	each	node	as	its	own	cluster	
– At	each	round,	find	two	clusters	such	that	merging	
them	will	reduce	the	k-means	cost	the	most	

– Merge	these	two	clusters	
– Repeat	un2l	there	are	k-clusters	

K	means:	discussion	
•  Tries	to	minimise	sum	of	distances	of	items	to	cluster	

centers	
–  Computa2onally	hard	problem	
–  Algorithm	gives	local	op2mum	

•  Depends	on	ini2alisa2on	(star2ng	set	of	centers)	
–  Can	give	poor	results	
–  Slow	speed	

•  The	right	‘k’	may	be	unknown	
–  Possible	strategy:	try	different	possibili2es	and	take	the	best	

•  Can	be	improved	by	heuris2cs	like	choosing	centers	
carefully	
–  E.g.	choosing	centers	to	be	as	far	apart	as	possible:	choose	one,	
choose	point	farthest	to	it,	choose	point	farthest	to	both	
(maximise	min	distance	to	exis2ng	set	etc)…	

–  Try	mul2ple	2mes	and	take	best	result..	

K-medoids	

•  Similar,	but	now	each	center	must	be	one	of	
the	given	items	
–  In	each	cluster,	find	the	item	that	is	the	best	
‘center’	and	repeat	

•  Useful	when	there	is	no	ambient	space	
(extrinsic	metric)	
– E.g.	A	distance	between	items	can	be	computed	
between	nodes,	but	they	are	not	in	any	par2cular	
Euclidean	space,	so	the	‘center’	is	not	a	
meaningful	point	

Other	center	based	methods	

•  K-center:	Minimise	maximum	distance	to	
center:		

•  K-median:	Minimise	sum	of	distances:	

Hierarchical	clustering	

•  Hierarchically	group	items	

Hierarchical	clustering	
•  Top	down	(divisive):	
–  Start	with	everything	in	1	
cluster	

– Make	the	best	division,	and	
repeat	in	each	subcluster	

•  Bo_om	up	(agglomera2ve):	
–  Start	with	n	different	clusters	
– Merge	two	at	a	2me	by	
finding	pairs	that	give	the	
best	improvement	

Hierarchical	clustering	
•  Gives	many	op2ons	for	a	
flat	clustering	

•  Problem:	what	is	a	good	
‘cut’	of	the	dendogram?	

Density	based	clustering	

•  Group	dense	regions	
together	

•  Be_er	at	non-linear	
separa2ons	

•  Works	with	unknown	
number	of	clusters	

DBSCAN	
•  Density	at	a	data	point:	

–  Number	of	data	points	within	radius	Eps	
•  A	core	point:		

–  Point	with	density	at	least	τ	
•  Border	point	

–  Density	less	than	τ,	but	at	least	one	core	point	within	radius	Eps	
•  Noise	point	

–  Neither	core	nor	border.	Far	from	dense	regions	

DBSCAN:	Discussions	

•  Requires	knowledge	of	suitable	radius	and	
density	parameters	(Eps	and	τ)	

•  Does	not	allow	for	possibility	that	different	
clusters	may	have	different	densi2es	

Density	based	clustering	

•  Single	linkage	(same	as	Kruskal’s	MST	
algorithm)	
– Start	with	n	clusters	
– Merge	two	clusters	with	the	shortest	bridging	link		
– Repeat	un2l	k	clusters	

•  Other,	more	robust	methods	exist	

Communi2es	

•  Groups	of	friends	
•  Colleagues/collaborators	
•  Web	pages	on	similar	topics	
•  Biological	reac2on	groups	
•  Similar	customers/users	…	

Other	applica2ons	

•  A	coarser	representa2on	of	networks	
•  One	or	more	meta-node	for	each	community	
•  Iden2fy	bridges/weak-links	
•  Structural	holes	

Community	detec2on	in	networks	

•  A	simple	strategy:	
– Choose	a	suitable	distance	measure	based	on	
available	data		
•  E.g.	Path	lengths;	distance	based	on	inverse	2e	
strengths;	size	of	largest	enclosing	group	or	common	
a_ribute;	distance	in	a	spectral	(eigenvector)	
embedding;	etc..	

– Apply	a	standard	clustering	algorithm	

Clustering	is	not	always	suitable	in	
networks	

•  Small	world	networks	have	small	diameter	
– And	some2me	integer	distances	
– A	distance	based	method	does	not	have	a	lot	of	
op2on	to	represent	similari2es/dissimilari2es	

•  High	degree	nodes	are	common	
– Connect	different	communi2es	
– Hard	to	separate	communi2es	

•  Edge	densi2es	vary	across	the	network	
– Same	threshold	does	not	work	well	everywhere	

Defini2ons	of	communi2es	

•  Varies.	Depending	on	applica2on	

•  General	idea:	Dense	subgraphs:	More	links	
within	community,	few	links	outside	

•  Some	types	and	considera2ons:	
– Par22ons:	Each	node	in	exactly	one	community	
– Overlapping:	Each	node	can	be	in	mul2ple	
communi2es	

Finding	dense	subgraphs	is	hard	in	
general	

•  Finding	largest	clique		
– NP-hard	
–  Computa2onally	intractable	
–  Polynomial	2me	(efficient)	algorithms	unlikely	to	exist	

•  Decision	version:	Does	a	clique	of	size	k	exist?		
– NP-complete	
–  Computa2onally	intractable	
–  Polynomial	2me	(efficient)	algorithms	unlikely	to	exist	

Dense	subgraphs:	Few	preliminary	
defini2ons	

•  For	S,	T	subgraphs	of	V	
•  e(S,T):	Set	of	edges	from	S	to	T	
– e(S)	=	e(S,S):	Edges	within	S	

•  dS(v)	:	number	of	edges	from	v	to	S	
•  Edge	density	of	S	:	|e(S)|/|S|	
– Largest	for	complete	graphs	or	cliques	

Dense	subgraph	

•  The	subgraph	with	largest	edge	density	
•  There	also	exists	a	decision	version:		
–  Is	there	a	subgraph	with	edge	density	>	α		

•  Can	be	solved	using	Max	Flow	algorithms	
– O(n2m)	:	inefficient	in	large	datasets	
–  Finds	the	one	densest	subgraph	

•  Variant:	Find	densest	S	containing	given	subset	X	
•  Other	versions:	Find	subgraphs	size	k	or	less	
•  NP-hard	

Efficient	approxima2on	for	finding	
dense	S	containing	X	

•  Gives	a	1/2	approxima2on	
•  Edge	density	of	output	S	set	is	at	least	half	of	
op2mal	set	S*	

•  (Proof	in	Kempe	2011).	

Modularity	

•  We	want	to	find	the	many	communi2es,	not	
just	one	

•  Clustering	a	graph	
•  Problem:	What	is	the	right	clustering?	
•  Idea:	Maximize	a	quan2ty	called	modularity	

Modularity	of	subset	S	

•  Given	graph	G	
•  Consider	a	random	G’	graph	with	same	node	
degrees	(remember	configura2on	model)	
– Number	of	edges	in	S	in	G:	|e(S)|G	
–  Expected	number	of	edges	in	S	in	G’:	E[|e(S)|G’]	
– Modularity	of	S:	|e(S)|	-	E[|e(S)|G’]	
– More	coherent	communi2es	have	more	edges	inside	
than	would	be	expected	in	a	random	graph	with	same	
degrees	

– Note:	modularity	can	be	nega2ve	

Modularity	of	a	clustering	

•  Take	a	par22on	(clustering)	of	V:		
•  Write	d(Si)	for	sum	of	degrees	of	all	nodes	in	Si	
•  Can	be	shown	that	E[|e(S)|G’]	~	d(Si)2	
•  Defini2on:	Sum	over	the	par22on:		

Modularity	based	clustering	
•  Modularity	is	meant	for	use	more	as	a	measure	of	quality,	not	so	

much	as	a	clustering	method	

•  Finding	clustering	with	highest	modularity	is	NP-hard	
•  Heuris2c:		

–  Use	modularity	matrix	
–  Take	its	first	eigen	vector	

•  Note:	Modularity	is	a	rela2ve	measure	for	comparing	community	
structure.		

•  Not	en2rely	clear	in	which	cases	it	may	or	may	not	give	good	
results	

•  A	threshold	of	0.3	or	more	is	some2mes	considered	to	give	good	
clustering	

•  Can	be	used	as	a	stopping	criterion	(or	finding	
right	level	of	par22oning)	in	other	methods	
– Eg.	Girvan-newman	

Karate	club	hierarchic	clustering	

•  Shape	of	nodes	gives	actual	split	in	the	club	
due	to	internal	conflicts	
– Newman	2003	

Overlapping	communi2es	

•  i	

Non-Overlapping	communi2es	

Overlapping	communi2es	

•  s	

Affilia2on	graph	model	

•  Genera2ve	model:	
•  Each	node	belongs	to	some	communi2es	
•  If	both	a	and	b	are	in	community	c		
– Edge	(a,	b)	is	created	with	probability	pc	

Affilia2on	graph	model	

•  Problem:	
•  Given	the	network,	recover:		
–  Communi2es:	C		
– Memberships	or	Affilia2ons:	M	

•  Probabili2es:	pc	

•  A	

Maximum	likelihood	es2ma2on	

•  Given	data	X	
•  Assume	data	is	generated	by	some	model	f	
with	parameters	Θ	

•  Express	probability	P[f(X|	Θ)]:	f	generates	X,	
given	specific	values	of	Θ.	

•  Compute	argmaxΘ	(P[f(X|	Θ)])	

MLE	for	AGM:	The	BIGCLAM	method	

•  Finding	the	best	possible	bipar2te	network	is	
computa2onally	hard	(too	many	possibili2es)	

•  Instead,	take	a	model	where	memberships	are	
real	numbers:	Membership	strengths	
– FuA	Strength	of	membership	of	u	in	A	
– PA(u,v)	=	1	-	exp(-FuA.FvA)	:	Each	community	links	
independently,	by	product	of	strengths	

– Total	probability	of	an	edge	exis2ng:	
•  P(u,v)	=	1	-	ΠC(1	-	Pc(u,v))	

BIGCLAM	

•  Find	the	F	that	maximizes	the	likelihood	that	
exactly	the	right	set	of	edges	exist.	

•  Details	Omi_ed	

•  Op2onally,	See		
•  Overlapping	Community	Detec2on	at	Scale:	A	
Nonnega2ve	Matrix	Factoriza2on	Approach	by	J.	
Yang,	J.	Leskovec.	ACM	Interna2onal	Conference	
on	Web	Search	and	Data	Mining	(WSDM),	2013.	

Correla2on	clustering	
•  Some	edges	are	known	to	
be	similar/friends/trusted	

•  marked	“+”	
•  Some	edges	are	known	to	
be	dissimilar/enemies/
distrusted	

•  marked	“-”	
•  Maximize	the	number	of	+	
edges	inside	clusters	and		

•  Maximize	the	number	of	-	
edges	between	clusters	

Applica2ons	

•  Community	detec2on	based	on	similar	
people/users	

•  Document	clustering	based	on	known	
similarity	or	dissimilarity	between	documents	

Features	

•  Clustering	without	need	to	know	number	of	clusters	
–  k-means,	medians,	clusters	etc	need	to	know	number	of	
clusters	or	other	parameters	like	threshold	

–  Number	of	clusters	depends	on	network	structure	
•  Actually,	does	not	need	any	parameter		
•  NP	hard	
•  Note	that	graph	may	be	complete	or	not	complete	

–  In	some	applica2ons	with	unlabeled	edges,	it	may	be	
reasonable	to	change	edges	to	“+”	edges	and	non-edges	to	
“-”	edges	

Approxima2on	

•  Naive	1/2	approxima2on	(not	very	useful):		
–  If	there	are	more	+	edges	
•  Put	them	all	in	1	cluster	

–  If	there	are	more	-	edges	
•  Put	nodes	in	n	different	clusters	

Be_er	approxima2ons	

•  2	ways	of	looking	at	it:		
– Maximize	agreement	or	Minimize	disagreement	
– Similar	idea,	but	we	know	different	approxima2on	
algorithms		

•  Nikhil	Bansal	et	al.	develop	PTAS	(polynomial	
2me	approxima2on	scheme)	for	maximizing	
agreement:	
–  (1-ε)	approxima2on,	running	2me		

Approxima2on	

•  Min-disagree:	
– 4-approxima2on	

