Influence maximisation

Social and Technological Networks

Rik Sarkar

University of Edinburgh, 2016.

Maximise the spread of a cascade

* Viral marketing with restricted costs

e Suppose you have a budget of reaching k
nodes

 Which k nodes should you convert to get as
large a cascade as possible?

Classes of problems

* Class P of problems
— Solutions can be computed in polynomial time
— Algorithm of complexity O(poly(n))
— E.g. sorting, spanning trees etc

* Class NP of problems

— Solutions can be checked in polynomial time, but
not necessarily computed

— E.g. All problems in P, factorisation, satisfiability,
set cover etc

Hard problems

e Computationally intractable

— Those not (necessarily) in P

— Requires more time, e.g. 2" : trying out all possibilities
* Standing question in CS: is P = NP?

— We don’t know
* Important point:

— Many problems are unmanageable
* Require exponential time
* Or high polynomial time, say: n'®
* |In large datasets even n* or n3 can be unmanageable

Approximations

When we have too much computation to
handle, we have to compromise

We give up a little bit of quality to do it in
practical time

Suppose the best possible (optimal) solution
gives us a value of OPT

Then we say an algorithm is a c-approximation
If it gives a value of c*OPT

Examples

e Suppose you have k cameras to place in building
how much of the floor area can your observation
cover?

— |f the best possible coverage is A
— A % approximation algorithm will cover at least 3A/4

* Suppose in a network the maximum possible size
of a cascade with k starting nodes is X

— i.e a cascade starting with k nodes can reach X nodes

— A Y-approximation algorithm that guarantees
reaching X/2 nodes

Back to influence maximisation

e Models

* Linear contagion threshold model:

— The model we have used: node activates to use A instead
of B

— Based on relative benefits of using A and B and how many
friends use each

* |Independent activation model:

— If node u activates to use A, then u causes neighbor v to
activate and use A with probability

o p
u,v

* Thatis, every edge has an associated probability of spreading
influence (like the strength of the tie)

Hardness

* |[n both the models, finding the exact set of k
initial nodes to maximize the influence
cascade is NP-Hard

— Intractable, unlikely that polynomial time
algorithms exist unless P = NP

Approximation

* OPT : The optimum result —the largest
number of nodes reachable with a cascade
starting with k nodes

 There is a polynomial time algorithm to select
k nodes that guarantees the cascade will
spread to (1_2).0anodes

* To prove this, we will use a property called
submodularity

Example: Camera coverage

Suppose you are placing
sensors/cameras to monitor a
region (eg. cameras, or
chemical sensors etc)

There are n possible camera
locations

Each camera can “see” a
region

A region that is in the view of
one or more sensors is covered

With a budget of k cameras,

we want to cover the largest
possible area

— Function f: Area covered

Marginal gains

 Observe:

 Marginal coverage
depends on other
sensors in the
selection

Marginal gains

 Observe:

 Marginal coverage
depends on other
sensors in the
selection

Marginal gains

e Observe:

 Marginal coverage
depends on other
sensors in the
selection

* More selected
sensors means less
marginal gain from
each individual

Submodular functions

e Suppose function f(x)
represents the total o
benefit of selecting x o

— And f(S) the benefit of
selecting set S

e Function f is submodular if:
SCT —

S U{z}) — f(S) = fF(TU{z}) — f(T)

Submodular functions

* Means diminishing returns

* A selection of x gives
smaller benefits if many o
other elements have been
selected

SCT —

S U{z}) — f(S) = fF(TU{z}) — f(T)

Submodular functions

e Our Problem: select
locations set of size k °
maximizes coverage 0

* NP-Hard

SCT —

S U{z}) — f(S) = fF(TU{z}) — f(T)

Greedy Approximation algorithm

Start with empty setS=9

Repeat k times:

Find v that gives maximum marginal gain:
f(SU{vy) = f(5)

Add insertvinto S

* Observation 1: Coverage
function is submodular

* Observation 2: Coverage
function is monotone:

* Adding more sensors
always increases
coverage

SCT = f(S) < f(T)

Theorem

* For monotone submodular functions, the
greedy algorithm produces a (1 - é)
approximation

* That is, the value f(S) of the final set is at least

(1 — 1) -OPT
e

* (Note that this applies to maximisation problems, not to minimisation)

Proof

ldea:
OPT is the max possible

On every step there is at
least one element that
covers 1/k of remaining:

(OPT - current) * 1/k
Greedy selects that element

1/k
next

OPT

current

Proof

e |dea:

* At each step coverage
remaining becomes

| 1
k n 9X1/k

* Of what was remaining after
previous step

OPT

current

Proof

e After k steps, we have
remaining coverage of OPT

R AR
k e

 Fraction of OPT covered:

(-2)

1/k
next

OPT

current

* We have shown that monotone submodular
maximization can be approximated using
greedy selection

* To show that maximizing spread of cascading
influence can be approximated:

— We will show that the function is monotone and
submodular

Cascades

e Cascade function f(S):

— Given set S of initial adopters, f(S) is the number
of final adopters

 We want to show: f(S) is submodular

* |dea: Given initial adopters S, let us consider
the set H that will be the corresponding final
adopters

— H is “covered” by S

Cascade in independent activation
model

* If node u activates to use A, then u causes
neighbor v to activate and use A with probability
_ pu,v

* Now suppose u has been activated
— Neighbor v will be activated with prob. p, ,,
— Neighbor w will be activated with prob. p, ,, etc..

— Instead of waiting for u to be activated before making

the random choices, we can make the random choices
beforehand

— je. if uis activated, then v will be activated, but w will
not be activated... etc

Cascade in independent activation
model
We can make the random choices for u activation

beforehand.

Tells us which edges of u are “effective” when u
iS Hon”

Similarly for other nodes v, x, vy

We know exactly which nodes will be activated as
a consequence of u being activated

Exactly the same as “coverage” of a sensor/
camera network

Say, c(u) is the set of nodes covered by u.

We know exactly which nodes will be
activated as a consequence of u being
activated

Exactly the same as “coverage” of a sensor
network

Say, c(u) is the set of nodes covered by u.
c(S) is the set of nodes covered by a set S
f(S) = | c(S)| is submodular

Remember that we had made the probabilistic choices
for each edge uv:

That is, we made a set of choices representing the
entire network

Let us use x to represent this configuration
We showed that given x, the function is submodular

But what about other x?
— Can we say that over all x we have submodularity?

* Now, we sum over all possible x, weighted by
their probability.

* Non-negative linear combinations of submodular
functions are submodular,

— Therefore the sum of all x is submodular

* The approximation algorithm for submodular

maximization is an approximation for the cascade

in independent activation model with same
factor

Linear threshold model

e Also submodular and monotone

 Proof ommitted.

Applications of submodular
optimization
Sensing the contagion

Place sensors to detect the spread

Find “representative elements”: Which blogs
cover all topics?

Machine learning

Exemplar based clustering (eg: what are good
seeds?)

Image segmentation

Sensing the contagion

* Consider a different problem:

* A water distribution system may get
contaminatec

 We want to place sensors such that
contamination is detected

(c) effective placement (d) poor placement

Social sensing

Which blogs should | read? Which twitter accounts should |
follow?

— Catch big breaking stories early
Detect cascades
— Detect large cascades
— Detect them early...
— With few sensors
Can be seen as submodular optimization problem:
— Maximize the “quality” of sensing

Ref: Krause, Guestrin; Submodularity and its application in optimized information
gathering, TIST 2011

Representative elements

Take a set of Big data

Most of these may be
redundant and not so useful

What are some useful
“representative elements”?

— Good enough sample to
understand the dataset :

— Cluster representatives

— Representative images

— Few blogs that cover main
areas...

SV e
b
E bl e

Problem with submodular
maximization

Too expensive!

Each iteration costs O(n): have to check each element to
find the best

Problem in large datasets

Mapreduce style distributed computation can help
— Split data into multiple computers

— Compute and merge back results: Works for many types of
problems

Ref: Mirzasoleiman, Karbasi, Sarkar, Krause; Distributed submodular
maximization: Finding representative elements in massive data. NIPS
2013.

Project

Office hours:

Every Wednesday 3:30 —4:00.

This Friday 11 Nov, 3pm —5pm

Simple tips about projects online on projects
page

— Take care in writing: What you write determines
your grade

