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Clustering

* A core problem of machine learning:
— Which items are in the same group?

* |dentifies items that are similar relative to rest
of data

* Simplifies information by grouping similar
items
— Helps in all types of other problems



Clustering

e Qutline approach:

e Given a set of items

— Define a distance between them

* E.g. Euclidean distance between points in a plane; Euclidean
distance between other attributes; path lengths in a network; tie
strengths in a network...

— Determine a grouping that optimises some function
(prefers ‘close’ items in same group).

 Reference for clustering:
— Charu Aggarwal: The Data Mining Textbook, Springer
— Free on Springer site (from university network)



K-means clustering

e There are n items

* Select k ‘centers’
— May be random k locations in space
— May be location of k of the items selected randomly
— May be chosen according to some method

* |terate till convergence:

— Assign each item to the cluster for its closest center

— Recompute location of center as the mean location of
all elements in the cluster

— Repeat



K means: discussion

Tries to minimise sum of distances of items to cluster
centers

— Computationally hard problem

— Algorithm gives local optimum

Depends on initialisation (starting set of centers)

— Can give poor results

— Slow speed
The right ‘k” may be unknown

— Possible strategy: try different possibilities and take the best
Can be improved by heuristics like choosing centers
carefully

— E.g. choosing centers to be as far apart as possible: choose one,
choose point farthest to it, choose point farthest to both
(maximise min distance to existing set etc)...

— Try multiple times and take best result..



K-medoids

 Similar, but now each center must be one of
the given items

— In each cluster, find the item that is the best
‘center’ and repeat

* Useful when there is no ambient space

— E.g. A distance between items can be computed,

but they are not in any particular Euclidean space,
so the ‘center’ is not a meaningful point



Hierarchical clustering

* Hierarchically group items




Hierarchical clustering

 Top down (divisive):

— Start with everythingin 1
cluster

— Make the best division, and
repeat in each subcluster

* Bottom up (agglomerative):
— Start with n different clusters (a) Dendrogram

— Merge two at a time by
finding pairs that give the
best improvement



Hierarchical clustering

* Gives many options for a
flat clustering

* Problem: what is the right
place to ‘cut’ the
dendogram?
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Density based clustering

Group dense regions
together R
Less dependent on Y e
distance REND
configurations
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Better at non-linear
separations

Works with unknown
number of clusters



Density based clustering

* Density at a data point:
— Number of data points within radius Eps

* A core point:

— Point with density at least t

Algorithm DBSCAN(Data: D, Radius: Eps, Density: 7 )
begin
Determine core, border and noise points of D at level (Eps, 7);
Create graph in which core points are connected
if they are within Eps of one another;
Determine connected components in graph;
Assign each border point to connected component
with which it is best connected;
return points in each connected component as a cluster;
end



DBSCAN: Discussions

* Requires knowledge of suitable radius and
density parameters (Eps and 1)

* Does not allow for possibility that different
clusters may have different densities
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Course and projects

e Office hours

— Wednesdays as usual

— This week, also:
* Tuesday & Thursday 2pm —3pm

* Report writing
— Highlight whatever is important/interesting
* Interesting result, interesting technique, anything unusual..
— State it right at the beginning. Clear and concise.
— Make it easy to find a reason to give you marks!



Communities

Groups of friends
Colleagues/collaborators
Web pages on similar topics
Biological reaction groups
Similar customers/users ...



Other applications

A coarser representation of networks

One or more meta-node for each community
ldentify bridges/weak-links

Structural holes



Community detection in networks

* Asimple strategy:

— Choose a suitable distance measure based on

available data

* E.g. Path lengths; distance based on inverse tie
strengths; size of largest enclosing group or common
attribute; distance in a spectral (eigenvector)
embedding; etc..

— Apply a standard clustering algorithm



Clustering is not always suitable in
networks

* Small world networks have small diameter
— And sometime integer distances

— A distance based method does not have a lot of
option to represent similarities/dissimilarities

* High degree nodes are common
— Connect different communities
— Hard to separate communities
* Edge densities vary across the network
— Same threshold does not work well everywhere



Definitions of communities

* Varies. Depending on application

* General idea: Dense subgraphs: More links
within community, few links outside

* Some types and considerations:

— Partitions: Each node in exactly one community

— Overlapping: Each node can be in multiple
communities



Finding dense subgraphs is hard in
general

* Finding largest clique
— NP-hard
— Computationally intractable
— Polynomial time (efficient) algorithms unlikely to exist

e Decision version: Does a clique of size k exist?
— NP-complete
— Computationally intractable
— Polynomial time (efficient) algorithms unlikely to exist



Dense subgraphs: Few preliminary
definitions

For S, T subgraphs of V

e(S,T): Set of edges fromSto T

— e(S) = e(S,S): Edges within S

d<(v) : number of edges from v to S

Edge density of S: [e(S)|/|S]|

— Largest for complete graphs or cliques



Dense subgraph

The subgraph with largest edge density
There also exists a decision version:
— |s there a subgraph with edge density > a

Can be solved using Max Flow algorithms
— O(n2m) : inefficient in large datasets
— Finds the one densest subgraph

Variant: Find densest S containing given subset X

Other versions: Find subgraphs size k or less
NP-hard



Efficient approximation for finding

dense S containing X

Let G,, — G .

for £k = n downto | X|+ 1 do
Let v ¢ X be the lowest degree node in G \ X.
Let Gk—l — Gk \ {’U}

Output the densest subgraph among G, ...,G x|

* Gives a 1/2 approximation

* Edge density of output S set is at least half of
optimal set S$*

* (Proofin Kempe 2011).



Modularity

We want to find the many communities, not
just one

Clustering a graph
Problem: What is the right clustering?
ldea: Maximize a quantity called modularity



Modularity of subset S

* Given graph G

* Consider a random G’ graph with same node
degrees (remember configuration model)
— Number of edges in Sin G: |e(S)|¢
— Expected number of edges in Sin G”: E[| e(S) | 5]
— Modularity of S: |e(S)]| - E[|e(S)| ]

— More coherent communities have more edges inside
than would be expected in a random graph with same
degrees

— Note: modularity can be negative



Modularity of a clustering

Take a partition (clustering) of V: P = {S4,....

7Sk}

Write d(S;) for sum of degrees of all nodes in S,

Can be shown that E[|e(S)] ] ~ d(S;)?
Definition: Sum over the partition:
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Modularity based clustering

Modularity is meant for use more as a measure of quality, not so
much as a clustering method

Finding clustering with highest modularity is NP-hard
Heuristic:

— Use modularity matrix

— Take its first eigen vector

Note: Modularity is a relative measure for comparing community
structure.

Not entirely clear in which cases it may or may not give good
results

A threshold of 0.3 or more is sometimes considered to give good
clustering



e Can be used as a stopping criterion (or finding
right level of partitioning) in other methods

— Eg. Girvan-newman



Karate club hierarchic clustering

* Shape of nodes gives actual split in the club
due to internal conflicts

— Newman 2003
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