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Projects

* Thanks for the proposals. We will try to give

comments on piazza. Please continue your work till
then

e |f upload to piazza did not work, please try again

e (Guidelines for final submission available soon



Projects: Main points:

There i1s no “right answer”. We don't know the
solutions

We are happy to discuss with you and help you
make the project better

You will be marked for trying interesting ideas,
justitying them and comparing and discussion of
results

Don'’t be afraid to try risky/new ideas that may falil



Recap: Contagion,
cascades, im‘lenc

* Contagion: something that
spreads due to influence of
neighbors (cascading)

* Jechnology, product, () T nads rs e il adphr
INnnovation, idea, disease...

* [he spreading process at a
node is often called infection,
activation etc...




e [ight knit communities stop
the cascade

o Carefully picking some nodes
to activate can cause a large
cascade




a - strong communities

* A set S of nodes forms an a-strong (or a-dense)
community if for each node v in S, ds(v) > ad(v)

 That s, at least a fraction of neighbors of each
node Is within the community



Theorem

* A cascade with contagion threshold g cannot penetrate
an a-dense community witha > 1 -9

* [herefore, for a cascade with threshold g, and set X of
initial adopters of A:

1. If the rest of the network contains a cluster of
density > 1-g, then the cascade from X does not
result in a complete cascade

2. |f the cascade is not complete, then the rest of the
network must contain a cluster of density > 1-g



Proof

* |n Kleinberg & Easley

1. By contradiction: The first node in the cluster that
converts, cannot convert.

2. It set S is exactly the set of unconverted nodes at
the end, then any v in S must have 1-q fraction
edges in S, else v would have converted.



Extensions

he model extends to the case where each node v
has

» different ay and by, hence different gy

e Exercise: What can be a form for the theorem on
the previous slide for variable gy?



Cascade capacity

* Upto what threshold g can a small set of early
adopters cause a full cascade?

e definition: Small: A finite set in an infinite network



Cascade capacities

e 1-D grid:

e capacity = 1/2

e 2-D grid with 8

neighbors:

e capacity 3/8
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Theorem

No infinite network has cascade capacity > 1/2
Show that the interface/boundary shrinks

 Number of edges at boundary decreases at
every step

Take a node w at the boundary that converts Iin
this step

e Wwhad xedgesto A, yedgestoB
e g> 1/2implies x >y
True for all nodes

Implies boundary edges decreases

(a) Before v and w adopt .

(b) After v and w adopt A



Other models

e Non-monotone: an infected/converted node can
become un-converted

e Schelling’s model, granovetter's model: People are
aware of choices of all other nodes (not just
neighbors)



Causing large spread of
cascade

* Viral marketing with restricted costs
e SUppPose you have a budget of reaching k nodes

* Which k nodes should you convert to get as large a
cascade as possible?



Voaels

* Linear contagion threshold model:

e The model we have used: node activates to use A if benefit of
using p > Q

* |ndependent activation model:

* |f node u activates to use A, then u causes neighbor v to
activate and use A with probability

* Puyv

 Thatis, every edge has an associated probability of
spreading influence (like the strength of the tie)



Haraness

n both the models, finding the exact set of k initial
nodes to maximize the influence cascade is NP-
Hard

* |ntractable, unlikely that polynomial time
algorithms exist unless P = NP



Approximation

* There is a polynomial time algorithm that spreads
the cascade to (1_ 1) opr Nodes

€

 OPT : The optimum result — in this case, the
largest number of nodes reachable with a
cascade starting with k nodes



* Jo prove this, we will use a property called
submodularity

* et us take a detour into understanding
submodular functions

o After that, we will complete the proot.



Submodular functions

e Suppose function f(x) represents the total benefit of

selecting X

* And f(S) the benefit of selecting set S

e Function f I1s submodular If;

SCT —

f(sU{zy) = f(5) = f(TU{z}) — f(T)



Submodular functions

SCT —

f(SU{z}) — f(S) = f(TU{z}) — f(T)

* Means diminishing returns

e Selecting x gives smaller benefits it many others

have been selected



Example: Sensor coverage

Suppose you are placing sensors to

monitor a region (eg. cameras, or O
chemical sensors etc)

There are n possible camera locations

* Each sensor can “see” a region

* Aregion that is in the view of one or more
sensors is covered

* With a budget of k sensors, we want to O
cover the largest possible area

e Function f: Area covered



Marginal gains

e Observe:

 Marginal coverage
depends on other
sensors in the
selection



Marginal gains

e Observe:

 Marginal coverage
depends on other
sensors in the
selection



e Observe:

 Marginal coverage
depends on other
sensors in the selection

* More selected sensors
means less marginal
gain from each individual



SCT —

f(SU{z}) — f(S) =2 (T U{a}) — f(T)



e Qur Problem: select
locations set of size k
maximizes coverage

* NP-Hara



Greedy Approximation
algorithm

o Start with empty set S = @

 Repeat k times:

* Find v that gives maximum marginal gain:

f(SU{v}) = f(S5)

e Add insertvinto S



* Observation 1: Coverage
function Is submodular

* Observation 2: Coverage
function iIs monotone:

 Adding more sensors
always Increases coverage

SCT= f(S) < f(T)



Theorem

e For monotone submodular functions, the greedy
algorithm produces an <1_ 1> approximation

€

 That s, the value 1(S) of the final set is at least

(1_1) OPT
€



Proof

OPT
|dea:

OPT is the max possible

On every step there is at least
one element that covers 1/k of
remaining:

1/k
next current

e (OPT - current) * 1/k

Greedy selects that element



Proof

* At each step coverage
remaining becomes

(1-%)
k 1/k

next

 Of what was remaining after
previous step

OPT

current



Proof

e After k steps, we have
remaining coverage of OPT

1/k
next

 Fraction of OPT covered:

(-5

OPT

- current



e \We have shown that monotone submodular

maximization can be approximated using greedy
selection

* Jo show that maximizing spread of cascading
iINnfluence can be approximated:

e \We will show that the function iIs monotone and
submodular



