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Projects

• Thanks for the proposals. We will try to give 
comments on piazza. Please continue your work till 
then 

• If upload to piazza did not work, please try again 

• Guidelines for final submission available soon



Projects: Main points:
• There is no “right answer”. We don’t know the 

solutions 

• We are happy to discuss with you and help you 
make the project better 

• You will be marked for trying interesting ideas, 
justifying them and comparing and discussion of 
results 

• Don’t be afraid to try risky/new ideas that may fail



Recap: Contagion, 
cascades, influence

• Contagion: something that 
spreads due to influence of 
neighbors (cascading) 

• Technology, product, 
innovation, idea, disease… 

• The spreading process at a 
node is often called infection, 
activation etc…



Recap

• Tight knit communities stop 
the cascade 

• Carefully picking some nodes 
to activate can cause a large 
cascade



α - strong communities

• A set S of nodes forms an α-strong (or α-dense) 
community if for each node v in S, dS(v) ≥ αd(v) 

• That is, at least α fraction of neighbors of each 
node is within the community



Theorem
• A cascade with contagion threshold q cannot penetrate 

an α-dense community with α > 1 - q 

• Therefore, for a cascade with threshold q, and set X of 
initial adopters of A: 

1. If the rest of the network contains a cluster of 
density > 1-q, then the cascade from X does not 
result in a complete cascade 

2. If the cascade is not complete, then the rest of the 
network must contain a cluster of density > 1-q



Proof

• In Kleinberg & Easley  

1. By contradiction: The first node in the cluster that 
converts, cannot convert. 

2. If set S is exactly the set of unconverted nodes at 
the end, then any v in S must have 1-q fraction 
edges in S, else v would have converted.



Extensions

• The model extends to the case where each node v 
has 

• different av and bv , hence different qv 

• Exercise: What can be a form for the theorem on 
the previous slide for variable qv?



Cascade capacity

• Upto what threshold q can a small set of early 
adopters cause a full cascade?  

• definition: Small: A finite set in an infinite network



Cascade capacities
• 1-D grid: 

• capacity = 1/2 

!

• 2-D grid with 8 
neighbors: 

• capacity 3/8



Theorem
• No infinite network has cascade capacity > 1/2 

• Show that the interface/boundary shrinks  

• Number of edges at boundary decreases at 
every step 

• Take a node w at the boundary that converts in 
this step 

• w had x edges to A, y edges to B 

• q > 1/2 implies x > y 

• True for all nodes 

• Implies boundary edges decreases



Other models

• Non-monotone: an infected/converted node can 
become un-converted 

• Schelling’s model, granovetter’s model: People are 
aware of choices of all other nodes (not just 
neighbors)



Causing large spread of  
cascade

• Viral marketing with restricted costs 

• Suppose you have a budget of reaching k nodes 

• Which k nodes should you convert to get as large a 
cascade as possible?



Models
• Linear contagion threshold model: 

• The model we have used: node activates to use A if benefit of 
using p > q 

• Independent activation model: 

• If node u activates to use A, then u causes neighbor v to 
activate and use A with probability  

• pu,v 

• That is, every edge has an associated probability of 
spreading influence (like the strength of the tie)



Hardness 

• In both the models, finding the exact set of k initial 
nodes to maximize the influence cascade is NP-
Hard 

• Intractable, unlikely that polynomial time 
algorithms exist unless P = NP



Approximation

• There is a polynomial time algorithm that spreads 
the cascade to                  nodes 

• OPT : The optimum result — in this case, the 
largest number of nodes reachable with a 
cascade starting with k nodes
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• To prove this, we will use a property called 
submodularity 

!

• Let us take a detour into understanding 
submodular functions 

!

• After that, we will complete the proof. 



Submodular functions

• Suppose function f(x) represents the total benefit of 
selecting x 

• And f(S) the benefit of selecting set S 

• Function f is submodular if:  

S ✓ T =)
f(S [ {x})� f(S) � f(T [ {x})� f(T )



Submodular functions

• Means diminishing returns 

• Selecting x gives smaller benefits if many others 
have been selected

S ✓ T =)
f(S [ {x})� f(S) � f(T [ {x})� f(T )



Example: Sensor coverage
• Suppose you are placing sensors to 

monitor a region (eg. cameras, or 
chemical sensors etc) 

• There are n possible camera locations 

• Each sensor can “see” a region 

• A region that is in the view of one or more 
sensors is covered 

• With a budget of k sensors, we want to 
cover the largest possible area 

• Function f: Area covered



Marginal gains

• Observe: 

• Marginal coverage 
depends on other 
sensors in the 
selection



Marginal gains

• Observe: 

• Marginal coverage 
depends on other 
sensors in the 
selection



• Observe: 

• Marginal coverage 
depends on other 
sensors in the selection 

• More selected sensors 
means less marginal 
gain from each individual 



S ✓ T =)

f(S [ {x})� f(S) � f(T [ {x})� f(T )



• Our Problem: select 
locations set of size k 
maximizes coverage 

• NP-Hard



Greedy Approximation 
algorithm

• Start with empty set S = ∅ 

• Repeat k times:  

• Find v that gives maximum marginal gain: 

!

• Add insert v into S

f(S [ {v})� f(S)



• Observation 1: Coverage 
function is submodular 

• Observation 2: Coverage 
function is monotone: 

• Adding more sensors 
always increases coverage
S ✓ T ) f(S)  f(T )



Theorem
• For monotone submodular functions, the greedy 

algorithm produces an               approximation 

!

• That is, the value f(S) of the final set is at least  

!
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Proof
• Idea: 

• OPT is the max possible 

• On every step there is at least 
one element that covers 1/k of 
remaining: 

• (OPT - current) * 1/k 

• Greedy selects that element



Proof
• At each step coverage 

remaining becomes  

!

!

• Of what was remaining after 
previous step
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Proof
• After k steps, we have 

remaining coverage of OPT 

!

!

• Fraction of OPT covered: 
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• We have shown that monotone submodular 
maximization can be approximated using greedy 
selection 

!

• To show that maximizing spread of cascading 
influence can be approximated: 

• We will show that the function is monotone and 
submodular


