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Course

• No class on Friday 23rd. 

• Piazza forum to discuss projects, exercises, 
topics… 

• https://piazza.com/ed.ac.uk/fall2015/infr11124 

• Deadline for project selection? 

https://piazza.com/ed.ac.uk/fall2015/infr11124


• Preliminary plan deadline: approx Nov 5 (not 
graded) 

• Preliminary plan/proposal (short document) 

• Make sure you understand the problem  

• Have the data 

• Have a plan of approach



Spectral methods
• Understanding a graph using eigen values and eigen 

vectors of the matrix 

• We saw:  

• Ranks of web pages: components of 1st eigen vector of 
suitable matrix 

• Pagerank or HITS are algorithms designed to compute the 
eigen vector 

• Today: other ways spectral methods help in network 
analysis



Laplacian

• L = D - A 

!

!

• An eigen vector has one value for each node 

• We are interested in properties of these values
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Application 1: Drawing a 
graph

• Problem: Computer does not know 
what a graph is supposed to look like 

• A graph is a jumble of edges 

• Consider a grid graph: 

• We want it drawn nicely



Graph embedding
• Find positions for vertices of a graph in low dimension 

(compared to n) 

• One eigen vector gives x values of nodes 

• Other gives y-values of nodes … etc 

• Preserves some properties of the graph e.g. approximate 
distances between vertices 

• Useful in visualization 

• Finding approximate distances 



Intuitions: the 1-D case
• Suppose we take the jth eigen vector of a chain  

• What would that look like?  

• We are going to plot the chain along x-axis 

• The y axis will have the value of the node in the jth 
eigen vector  

• We want to see how these rise and fall



Observations

• j = 0 

• j=1 

• j=2 

• j =3 

• j = 19



For All j



Observations
• In Dim 1 grid: 

• v[1] is monotone  

• v[2] is not monotone  

• In dim 2 grid:  

• both v[1] and v[2] are monotone in 
suitable directions  

• For low values of j: 

• Nearby nodes have similar values 

• Useful for embedding



Application 2: Coloring
• Coloring: Assign colors to vertices, 

such that neighboring vertices do 
not have same color 

• E.g. Assignment of radio 
channels to wireless nodes. Good 
coloring reduces interference 

• Idea: High eigen vectors give 
dissimilar values to nearby nodes 

• Use for coloring!



Application 3: Cuts/
segmentation/clustering

• Find the smallest ‘cut’ 

• A small set of edges 
whose removal 
disconnects the graph 

• Clustering, community 
detection… 



Clustering/community 
detection

• v[1] tends to stretch the narrow 
connections: discriminates different 
communities 



Clustering: community 
detection

• More communities 

• Need higher dimensions 

!

• Warning: it does not always 
work so cleanly 

• In  this case, the data is very 
symmetric



Image segmentation

v[1]

Shi & malik ’00

weight(i, j) ⇡ e�(pxi�pxj)
2





Laplacian matrix
• Imagine a small and different quantity of heat at each 

node (say, a metal mesh)  

• we write a function u: u(i) = heat at i 

• This heat will spread through the mesh/graph 

• Question: how much heat will each node have after a 
small amount of time? 

• “heat” can be representative of the the probability of a 
random walk being there



Heat diffusion

• Suppose nodes i and j are neighbors 

• How much heat will flow from i to j? 



Heat diffusion
• Suppose nodes i and j are neighbors 

• How much heat will flow from i to j?  

• Proportional to the gradient:  

• u(i) - u(j)  

• this is signed: negative means heat flows into i



Heat diffusion
• If i has neighbors j1, j2…. 

• Then heat flowing out of i is: 

• u(i) - u(j1)  +  u(i) - u(j2) + u(i) - u(j3) + … 

• degree(i)*u(i) - u(j1) - u(j2) - u(j3) - …. 

• Hence L = D - A
2
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Laplacian

• The net heat flow out of nodes in a time step 

• The change in heat distribution in a small time step 

• The rate of change of heat distribution

L(u) ⇡ @u

@t



Heat flow

• Will eventually converge of 
v[0] : the zeroth eigen 
vector, with eigen value  

• v[0] is a constant: no 
more flow! 

v[0] = const

�0 = 0



Laplacian
• Changed represented by L on any 

input vector can be represented by 
sum of action of its eigen vectors 
(we saw this last time for MMT) 

• v[0] is the slowest component of 
the change  

• With multiplier  

• v[1] is slowest non-zero 
component 

• with multiplier 

�0 = 0

�1



Spectral gap

• Determines the overall speed of change 

• If the slowest component  v[1]  changes fast 

• Then overall the values must be changing fast 

• Fast diffusion

�1 � �0



Application 4: isomorphism 
testing

• Eigen values different implies graphs are different 

• Though not necessarily the other way



Spectral methods
• Wide applicability inside and outside networks 

• Related to many fundamental concepts 

• PCA 

• SVD 

• Random walks, diffusion, heat equation… 

• Results are good many times, but not always 

• Relatively hard to give provable properties 

• Inefficient: eig. computation costly on large matrix 

• (Somewhat) efficient methods exist for more restricted problems 

• e.g. when we want only a few smallest/largest eigen vectors 


