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Communities
• Groups of friends 

• Colleagues/collaborators 

• Web pages on similar topics 

• Biological reaction groups 

• Similar customers/users …



Other applications

• A coarser representation of networks 

• One or more meta-node for each community 

• Identify bridges/weak-links 

• Structural holes



Different definitions of 
communities 

• General idea: Dense subgraphs: More links within 
community, few links outside 

• Some types and considerations: 

1. Partitions: Each node in exactly one community 

2. Overlapping: Each node can be in multiple 
communities



From	last	class:	Partitioning	(Girvan-newman)

Repeat:	
• Find	edge	e	of	highest	
betweenness		
• Remove	e	
!
• Produces	a	hierarchic	
paritioning	structure	as	the	
graph	decomposes	into	
smaller	components



Finding dense subgraphs is 
hard in general

• Finding largest clique  

• NP-hard 

• Computationally intractable 

• Polynomial time (efficient) algorithms unlikely to exist 

• Decision version: Does a clique of size k exist?  

• NP-complete 

• Computationally intractable 

• Polynomial time (efficient) algorithms unlikely to exist



Few preliminary definitions
• For S, T subgraphs of V 

• e(S,T): Set of edges from S to T 

• e(S) = e(S,S): Edges within S 

• dS(v) : number of edges from v to S 

• Edge density of S : |e(S)|/|S| 

• Largest for complete graphs or cliques



Dense subgraph
• The subgraph with largest edge density 

• There also exists a decision version:  

• Is there a subgraph with edge density > α  

• Can be solved using Max Flow algorithms 

• O(n2m) : inefficient in large datasets 

• Finds the one densest subgraph 

• Variant: Find densest S containing given subset X 

• Other versions: Find subgraphs size k or less 

• NP-hard



Efficient approximation for 
finding dense S containing X
!

!

!

• Gives a 1/2 approximation 

• Edge density of output S set is at least half of 
optimal set S* 

• See Kempe 2011 for proof.



Modularity

• We want to find the many communities, not just one 

• Clustering a graph 

• Problem: What is the right clustering? 

• Idea: Maximize a quantity called modularity



Modularity of subset S
• Given graph G 

• Consider a random G’ graph with same node degrees (remember 
configuration model) 

• Number of edges in S in G: |e(S)|G 

• Expected number of edges in S in G’: E[|e(S)|G’] 

• Modularity of S: |e(S)| - E[|e(S)|G’] 

• More coherent communities have more edges inside than would 
be expected in a random graph with same degrees 

• Note: modularity can be negative



Modularity of a clustering
• Take a partition (clustering) of V:  

• Write d(Si) for sum of degrees of all nodes in Si 

• Can be shown that E[|e(S)|G’] ~ d(Si)2 

• Definition: Sum over the partition:  

!



Modularity based clustering
• Finding clustering with highest modularity is NP-hard 

• Heuristic:  

• Use modularity matrix 

• Take its first eigen vector 

• Note: Modularity is a relative measure of community structure.  

• Not entirely clear in which cases it may or may not give good 
results 

• A threshold of 0.3 or more is sometimes considered to give good 
clustering



Modularity

• Can be used as a stopping criterion (or finding right 
level of partitioning) in other methods 

• Eg. Girvan-newman



Faster modularity clustering
• Start with all nodes as their own community and proceed by merging 

• In every round,  

• Consider merging every pair of current communities 

• Merge the pair giving largest Δq : increase in modularity 

• Keep store modularity after each round 

• Take the set of clusters in round with max modularity 

• O((m+n)n) 

• General technique for hierarchic clustering, except using modularity



Karate club hierarchic 
clustering

• Shape of nodes gives actual split in the club due to 
internal conflicts

Newman 2003. Fast 
algorithm for detecting 
community structure in 

networks



Correlation clustering
• Some edges are known to be similar/

friends/trusted 

• marked “+” 

• Some edges are known to be 
dissimilar/enemies/distrusted 

• marked “-” 

• Maximize the number of + edges 
inside clusters and  

• Maximize the number of - edges 
between clusters



Applications

• Community detection based on similar people/
users 

• Document clustering based on known similarity or 
dissimilarity between documents



Features 
• Clustering without need to know number of clusters 

• k-means, medians, clusters etc need to know number of clusters 
or other parameters like threshold 

• Number of clusters depends on network structure 

• Actually, does not need any parameter  

• NP hard 

• Note that graph may be complete or not complete 

• In some applications with unlabeled edges, it may be reasonable 
to change edges to “+” edges and non-edges to “-” edges



Approximation
• Naive 1/2 approximation (not very useful):  

• If there are more + edges 

• Put them all in 1 cluster 

• If there are more - edges 

• Put nodes in n different clusters



Better approximations
• 2 ways of looking at it:  

• Maximize agreement or Minimize disagreement 

• Same idea, but we know different approximation 
algorithms  

• Nikhil Bansal et al. develop PTAS (polynomial time 
approximation scheme) for maximizing agreement: 

• (1-ε) approximation, running time 



Approximation

• Min-disagree: 

• 4-approximation



Projects

• Some people are looking for teammates (P1: 
lastfm, P5: Entropy, others..) 

• Please post and use the piazza forum to find 
teammates



Next

• (Possibly) A bit more on clustering 

• Diffusion, Spread of epidemics, cascades, finding 
influential nodes 

!

• Other suggestions? 


