Social and Technological Networks

Edinburgh, 2015

Lecture 2. Graph Properties & Random Graphs

TA: Maria Astefanoaei

Solutions to Exercises

Exercise 0.1. *Show that* $\ln n = \Theta(\lg n)$ *, and* $\lg n = \Theta(\log n)$ *.*

Answer. From the change of base formula $\log_e n = \frac{\log_2 n}{\log_2 e}$, therefore $\ln n = \frac{1}{\lg e} \lg n$. Similarly, $\lg n = \frac{1}{\log e} \log n$. Since both $\frac{1}{\lg e}$ and $\frac{1}{\log e}$ are constants, it follows that $\ln n = \Theta(\lg n)$ and $\lg n = \Theta(\lg n)$.

Exercise 0.2. Write code to create plots showing the threshold phenomenon for existence of isolated vertices.

Answer. The code plots the average number of isolated vertices taken over 100 Erdos Renyi graphs each with 100 nodes and $p = 0.00, 0.01, \dots, 0.99$. The average is close to 0 starting with $p = 0.05 \approx (\ln 100)/100$.

```
import networkx as nx
import matplotlib.pyplot as plt
n = 100
probabilities = []
averageIsolates = []
for i in range (0,100):
    p = float(i)/100
    probabilities.append(p)
    isolated = float(0)
    for j in range (1,101):
        er = nx.erdos_renyi_graph(n,p)
        isolated += len(nx.isolates(er))
    isolated /= j
    averageIsolates.append(isolated)
plt.scatter(probabilities, averageIsolates)
plt.show()
plt.semilogx(probabilities, averageIsolates)
plt.show()
```