
Security testing vs “regular” testing

▪ “Regular” testing aims to ensure that the program meets customer 

requirements in terms of features and functionality.

▪ Tests “normal” use cases 

 Test with regards to common expected usage patterns.

▪ Security testing aims to ensure that program fulfills security 

requirements.

▪ Often non-functional.

▪ More interested in misuse cases

 Attackers taking advantage of “weird” corner cases.
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Functional vs non-functional security 

requirements

▪ Functional requirements – What shall the software do?

▪ Non-functional requirements – How should it be done?

▪ Regular functional requirement example (Webmail system):

It should be possible to use HTML formatting in e-mails

▪ Functional security requirement example:

The system should check upon user registration that passwords are at 

least 8 characters long

▪ Non-functional security requirement example:

All user input must be sanitized before being used in database queries
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How would you 

write a unit test 

for this?



  

Software Vulnerabilities

  Common software vulnerabilties include
● Memory safety violations 

● Buffer overflows
● Dangling pointers

● Input Validation errors  
● Code injection
● Cross site scripting in 

web applications
● Email injection
● Format string attacks
● HTTP header injection

● Race conditions
● Symlink races
● Time of check to time of use bugs
● SQL injection

● Privilege confusion  
● Clickjacking
● Cross-site request 

forgery
● FTP bounce attack

● Side-channel attack 
● Timing attack



Common security testing approaches

Often difficult to craft e.g. unit tests from non-functional requirements

Two common approaches:

▪ Test for known vulnerability types

▪ Attempt directed or random search of program state space to 

uncover the “weird corner cases”

In today’s lecture:

▪ Penetration testing (briefly)

▪ Fuzz testing or “fuzzing”

▪ Concolic testing
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Penetration testing

▪ Manually try to “break” software

▪ Relies on human intuition and experience.

▪ Typically involves looking for known common problems.

▪ Can uncover problems that are impossible or difficult to find using 

automated methods

▪ …but results completely dependent on skill of tester!
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Fuzz testing

Idea: Send semi-valid input to a program and observe its behavior.

▪ Black-box testing – System Under Test (SUT) treated as a 

“black-box”

▪ The only feedback is the output and/or externally observable 

behavior of SUT.

▪ First proposed in a 1990 paper where completely random data 

was sent to 85 common Unix utilities in 6 different systems. 

24 – 33% crashed.

▪ Remember: Crash implies memory protection errors.

▪ Crashes are often signs of exploitable flaws in the program!
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Fuzz testing architecture
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Fuzzing Framework

Input
Input

Fuzzer

Dispatcher

Assessor

SUT

▪ Fuzzer generates inputs 

to SUT

▪ Dispatcher responsible 

for running SUT with 

input from fuzzer

▪ Assessor examines 

behavior of SUT to 

detect failures (i.e. signs 

of triggered bugs)



Fuzzing components: Input generation

Simplest method: Completely random

▪ Won’t work well in practice – Input deviates too much from 

expected format, rejected early in processing.

Two common methods: 

▪ Mutation based fuzzing

▪ Generation based fuzzing
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Mutation based fuzzing

Start with a valid seed input, and “mutate” it.

▪ Flip some bits, change value of some bytes.

▪ Programs that have highly structured input, e.g. XML, may 

require “smarter” mutations.

Challenge: How to select appropriate seed input?

▪ If official test suites are available, these can be used.

Generally mostly used for programs that take files as input.

▪ Trickier to do when interpretation of inputs depends on 

program state, e.g. network protocol parsers.

(The way a message is handled depends on previous 

messages.)
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Mutation based fuzzing – Pros and Cons

☺ Easy to get started, no (or little) knowledge of specific input format needed.

 Typically yields low code coverage, inputs tend to deviate too much from 

expected format – rejected by early sanity checks.
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int parse_input(char* data, size_t size) 

{

int saved_checksum, computed_checksum;

if(size < 4) return ERR_CODE;

// First four bytes of ‘data’ is CRC32 checksum

saved_checksum = *((int*)data);

// Compute checksum for rest of ‘data’

computed_checksum = CRC32(data + 4, size – 4);

// Error if checksums don’t match

if(computed_checksum != saved_checksum)

return ERR_CODE; 

// Continue processing of ‘data’

...

Mutated inputs will 

always be rejected 

here!



Mutation based fuzzing – Pros and Cons

☺ Easy to get started, no (or little) knowledge of specific input format needed.

 Typically yields low code coverage, inputs tend to deviate too much from 

expected format – rejected by early sanity checks.

 Hard to reach “deeper” parts of programs by random guessing
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int parse_record(char* data, int type) 

{

switch(type) {

case 0xFF0001:

parse_type_A(data);

break;

case 0xFF0002:

parse_type_B(data);

break;  

case 0xFF0003:

parse_type_C(data);

break;  

...

Very unlikely to guess 

“magic constants” 

correctly.

If seed only contains 

Type A records, 

parse_type_B will 

likely never be tested.



Generation based fuzzing

Idea: Use a specification of the input format (e.g. a grammar) to automatically 

generate semi-valid inputs

Usually combined with various fuzzing heuristics that are known to trigger 

certain vulnerability types.

▪ Very long strings, empty strings

▪ Strings with format specifiers, “extreme” format strings

▪ %n%n%n%n%n%n%n%n%n%n%n%n%n%n%n

▪ %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s

▪ %5000000.x

▪ Very large or small values, values close to max or min for data type

0x0, 0xffffffff, 0x7fffffff, 0x80000000, 0xfffffffe

▪ Negative values where positive ones are expected
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Generation based fuzzing – Pros and Cons

☺ Input is much closer to the expected, much better coverage

☺ Can include models of protocol state machines to send messages 

in the sequence expected by SUT.

 Requires input format to be known.

 May take considerable time to write the input format 

grammar/specification. 
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Examples of generation based fuzzers

(open source)
▪ SPIKE (2001): 

▪ Early successful generation based fuzzer for network protocols. 

▪ Designed to fuzz input formats consisting of blocks with fixed or 

variable size. E.g. [type][length][data]

▪ Peach (2006):

▪ Powerful fuzzing framework which allows specifying input formats in 

an XML format. 

▪ Can represent complex input formats, but relatively steep learning 

curve.

▪ Sulley (2008):

▪ More modern fuzzing framework designed to be somewhat simpler 

to use than e.g. Peach.

▪ Also several commercial fuzzers, e.g. 

Codenomicon DEFENSICS, BeStorm, etc.
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Fuzzing components: The Dispatcher

Responsible for running the SUT on each input generated by fuzzer

module.

▪ Must provide suitable environment for SUT.

▪ E.g. implement a “client” to communicate with a SUT using the 

fuzzed network protocol.

▪ SUT may modify environment (file system, etc.)

▪ Some fuzzing frameworks allow running SUT inside a virtual 

machine and restoring from known good snapshot after each SUT 

execution.
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Fuzzing components: The Assessor

Must automatically assess observed SUT behavior to determine if a 

fault was triggered.

▪ For C/C++ programs: Monitor for memory access violations, e.g. 

out-of-bounds reads or writes.

▪ Simplest method: Just check if SUT crashed.

▪ Problem: SUT may catch signals/exceptions to gracefully handle 

e.g. segmentation faults 

 Difficult to tell if a fault, (which could have been exploitable with 

carefully crafted input), have occurred
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Improving fault detection

One solution is to attach a programmable debugger to SUT.

▪ Can catch signals/exceptions prior to being delivered to application.

▪ Can also help in manual diagnosis of detected faults by recording stack 

traces, values of registers, etc.

However: All faults do not result in failures, i.e. a crash or other 

observable behavior (e.g. Heartbleed).

▪ An out-of-bounds read/write or use-after-free may e.g. not result in a 

memory access violation.

▪ Solution: Use a dynamic-analysis tool that can monitor what goes on 

“under the hood”

▪ Can potentially catch more bugs, but SUT runs (considerably) slower.

 Need more time for achieving the same level of coverage
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Memory error checkers
Two open source examples

AddressSanitizer

▪ Applies instrumentation during compilation: Additional code is inserted in program 

to check for memory errors.

▪ Monitors all calls to malloc/new/free/delete – can detect if memory is freed twice, 

used after free, out of bounds access of heap allocated memory, etc.

▪ Inserts checks that stack buffers are not accessed out of bounds

▪ Detects use of uninitialized variables

▪ etc…

Valgrind/Memcheck

▪ Applies instrumentation directly at the binary level during runtime – does not need 

source code!

▪ Can detect similar problems as AddressSanitizer

▪ Applying instrumentation at the machine code level has some benefits – works with 

any build environment, can instrument third-party libraries without source code, etc.

▪ But also comes at a cost; Runs slower than e.g. AddressSanitizer and can 

generally not detect out-of-bounds access to buffers on stack.

▪ Size of stack buffers not visible in machine code
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Fuzzing web applications

▪ Errors are often on a higher abstraction level compared to e.g. 

simple coding errors leading to buffer overflows

▪ No hardware support for detecting faults – i.e. program doesn’t 

crash when something “bad” happens.

▪ Several additional challenges when fuzzing web applications:

▪ Determining inputs

▪ Assessing results (detecting faults)
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Web application input vectors

▪ Inputs much more diverse than e.g. a file or a TCP connection:

▪ Form fields (name-value pairs and hidden fields)

▪ URL (names of pages and directories)

▪ HTTP headers

▪ Cookies

▪ Uploaded files

▪ AJAX

▪ …

▪ How to identify inputs?

▪ Manually

▪ Using an automated crawler – tries to visit all links and “map out” 

the web application
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Web application input generation

▪ How to fuzz?

▪ XSS: Try including script tags

▪ SQL injection: Try supplying SQL-injection attack strings

▪ Try accessing resources that should require authentication

▪ …
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Assessing results of web app fuzzing

Automatically detecting faults generally much harder than for native 

programs running on the CPU!

▪ Often requires abstract “understanding” of what is correct behavior

▪ For example: Detecting CSRF errors requires knowledge of 

what resources are supposed to be protected

▪ Difficult to cut the human out of the loop completely!
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Assessing results of web app fuzzing

Typical things to look for:

▪ Server errors

▪ Error messages (requires ad-hoc parsing of responses)

▪ Error codes (5xx errors, etc.)

▪ Signs of input (e.g. JavaScript) in responses

▪ Possible for reflected XSS

▪ Much harder for stored XSS!

▪ Error messages or SQL output indicating SQL-injection 

problems
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Limitations of fuzz testing

▪ Many programs have an infinite input space and state space -

Combinatorial explosion!

▪ Conceptually a simple idea, but many subtle practical challenges

▪ Difficult to create a truly generic fuzzing framework that can cater 

for all possible input formats.

▪ For best results often necessary to write a custom fuzzer for each 

particular SUT.

▪ (Semi)randomly generated inputs are very unlikely to trigger 

certain faults. 
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Limitations of fuzz testing
Example from first lecture on vulnerabilities
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char buffer[100];

if(strlen(input) > 100)

{

printf(“String too long!”);

exit(1);

}

strcpy(buffer, input);

The off-by-one error will only 

be detected if 
strlen(input) == 100

Very unlikely to trigger this 

bug using black-box fuzz 

testing!



Fuzzing outlook

▪ Mutation-based fuzzing can typically only find the “low-hanging 

fruit” – shallow bugs that are easy to find

▪ Generation-based fuzzers almost invariably gives better coverage, 

but requires much more manual effort

▪ Current research in fuzzing attempts to combine the “fire and 

forget” nature of mutation-based fuzzing and the coverage of 

generation-based.

▪ Evolutionary fuzzing combines mutation with genetic algorithms to try 

to “learn” the input format automatically. Recent successful example is 

“American Fuzzy Lop” (AFL)

▪ Whitebox fuzzing generates test cases based on the control-flow 

structure of the SUT. Our next topic…
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Concolic testing

Idea: Combine concrete and symbolic execution

▪ Concolic execution (CONCrete and symbOLIC)

Concolic execution workflow:

1. Execute the program for real on some input, and record path taken. 

2. Encode path as query to SMT solver and negate one branch condition

3. Ask the solver to find new satisfying input that will give a different path

Reported bugs are always accompanied by an input that triggers the 

bug (generated by SMT solver)

 Complete – Reported bugs are always real bugs
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Concolic testing – small example
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void wheather(int temperature, unsigned int precipitation) 

{

char forecast[5];

if(temperature > 0) {

if(precipitation > 0)

strcpy(forecast, “rain”);

else

strcpy(forecast, “nice”);

} else {

if(precipitation == 0)

strcpy(forecast, “cold”);

else if(precipitation > 20)

strcpy(forecast, “blizzard”);

else

strcpy(forecast, “snow”);

}

...

Buffer 

overflow!



Concolic testing – small example
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void wheather(int temperature, unsigned int precipitation ) 

{

char forecast[5];

if(temperature > 0) {

if(precipitation > 0)

strcpy(forecast, “rain”);

else

strcpy(forecast, “nice”);

} else {

if(precipitation == 0)

strcpy(forecast, “cold”);

else if(precipitation > 20)

strcpy(forecast, “blizzard”);

else

strcpy(forecast, “snow”);

}

...

First round:

Concrete inputs (arbitrary): 

temperature=1, precipitation=1

Recorded path constraints:

temperature > 0 ∧ precipitation > 0

New path constraint: 

temperature > 0 ∧ ¬ (precipitation > 0)

Solution from solver:

temperature=1, precipitation=0



Concolic testing – small example
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void wheather(int temperature, unsigned int precipitation ) 

{

char forecast[5];

if(temperature > 0) {

if(precipitation > 0)

strcpy(forecast, “rain”);

else

strcpy(forecast, “nice”);

} else {

if(precipitation == 0)

strcpy(forecast, “cold”);

else if(precipitation > 20)

strcpy(forecast, “blizzard”);

else

strcpy(forecast, “snow”);

}

...

Second round:

Concrete inputs: 

temperature=1, precipitation=0

Recorded path constraints:

temperature > 0 ∧ ¬ (precipitation > 0)

New path constraint: 

¬ (temperature > 0)

Solution from solver:

temperature=0, precipitation=0

Note: ‘precipitation ’ is 

unconstrained – no need to care 

about later branch conditions 

when negating an earlier 

condition.



Concolic testing – small example
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void wheather(int temperature, unsigned int precipitation ) 

{

char forecast[5];

if(temperature > 0) {

if(precipitation > 0)

strcpy(forecast, “rain”);

else

strcpy(forecast, “nice”);

} else {

if(precipitation == 0)

strcpy(forecast, “cold”);

else if(precipitation > 20)

strcpy(forecast, “blizzard”);

else

strcpy(forecast, “snow”);

}

...

Third round:

Concrete inputs: 

temperature=0, precipitation=0

Recorded path constraints:

¬ (temperature > 0) ∧ precipitation = 0

New path constraint: 

¬ (temperature > 0) ∧ ¬(precipitation = 0)

Solution from solver:

temperature=0, precipitation=1



Concolic testing – small example
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void wheather(int temperature, unsigned int precipitation ) 

{

char forecast[5];

if(temperature > 0) {

if(precipitation > 0)

strcpy(forecast, “rain”);

else

strcpy(forecast, “nice”);

} else {

if(precipitation == 0)

strcpy(forecast, “cold”);

else if(precipitation > 20)

strcpy(forecast, “blizzard”);

else

strcpy(forecast, “snow”);

}

...

Fourth round:

Concrete inputs: 

temperature=0, precipitation=1

Recorded path constraints:

¬ (temperature > 0) ∧ ¬(precipitation = 0) 

∧ ¬(precipitation > 20)

New path constraint: 

¬ (temperature > 0) ∧ ¬(precipitation = 0) 

∧ precipitation > 20

Solution from solver:

temperature=0, precipitation=21



Concolic testing – small example
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void wheather(int temperature, unsigned int precipitation ) 

{

char forecast[5];

if(temperature > 0) {

if(precipitation > 0)

strcpy(forecast, “rain”);

else

strcpy(forecast, “nice”);

} else {

if(precipitation == 0)

strcpy(forecast, “cold”);

else if(precipitation > 20)

strcpy(forecast, “blizzard”);

else

strcpy(forecast, “snow”);

}

...

Fifth round:

Concrete inputs: 

temperature=0, precipitation=21

Recorded path constraints:

¬ (temperature > 0) ∧ ¬(precipitation = 0) 

∧ precipitation > 20

Bug found!



Challenges with concolic testing:

Path explosion
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Number of paths increase exponentially with number of branches

▪ Most real-world programs have an infinite state space!

▪ For example, number of  loop iterations may depend on size of input

Not possible to explore all paths

 Need a strategy to explore “interesting” parts of the program



Challenges with concolic testing:

Path explosion
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Depth-first search (as in the first example) will easily get “stuck” in one part 

of the program

▪ May e.g. keep exploring the same loop with more and more iterations

Breadth-first search will take a very long time to reach “deep” states

▪ May take “forever” to reach the buggy code

Try “smarter” ways of exploring the program state space

▪ May want to try to run loops many times to uncover possible buffer 

overflows

▪ …but also want to maximize coverage of different parts of the program



Generational search (“whitebox fuzzing”)
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The Microsoft SAGE system implements “whitebox fuzzing”

▪ Performs concolic testing, but prioritizes paths based on how much they 

improve coverage

▪ Results can be assessed similar to black-box fuzzing (with dynamic 

analysis tools, etc.)

Search algorithm outline:

1. Run program on concrete seed input and record path constraint

2. For each branch condition:

I. Negate condition and keep the earlier conditions unchanged.

II. Have SMT solver generate new satisfying input and run program with that input.

III. Assign input a score based on how much it improves coverage

(I.e. how much previously unseen code will be executed with that input)

IV. Store input in a global worklist sorted on score

3. Pick input at head of worklist and repeat.



Rationale for “whitebox fuzzing”
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▪ Coverage based heuristic avoids getting “stuck” as in DFS

▪ If one test case executes the exact same code as in a previous test 

case its score will be 0 → Moved to end of worklist → Probably never 

used again

▪ Gives sparse but more diverse search of the paths of the program

▪ Implements a form of greedy search heuristic

▪ For example, loops may only be executed once!

▪ Only generates input “close” to the seed input (cf. mutation-based 

fuzzing)

 Will try to explore the “weird corner cases” in code exercised by 

seed input

 Choice of seed input important for good coverage 



Rationale for “whitebox fuzzing”
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Has proven to work well in practice

▪ Used in production at Microsoft to test e.g. Windows, Office, etc. prior to 

release

▪ Has uncovered many serious vulnerabilities that was missed by 

other approaches (black-box fuzzing, static analysis, etc.)

Interestingly, SAGE works directly at the machine-code level

▪ Note: Source code not needed for concolic execution – sufficient to 

collect constraints from one concrete sequence of machine-code 

instructions.

▪ Avoids hassle with different build environments, third-party libraries, 

programs written in different languages etc.

▪ …but sacrifices some coverage due to additional approximations 

needed when working on machine code



Limitations of concolic testing
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▪ The success of concolic testing is due to the massive improvement in 

SAT/SMT solvers during the last two decades.

▪ Main bottleneck is still often the solvers. 

▪ Black-box fuzzing can perform a much larger number of test cases per 

time unit – may be more time efficient for “shallow” bugs.

▪ Solving SAT/SMT problems is NP-complete. 

▪ Solvers like e.g. Z3 use various “tricks” to speed up common cases

▪ …but may take unacceptably long time to solve certain path constraints.

▪ Solving SMT queries with non-linear arithmetic (multiplication, division, 

modulo, etc.) is an undecidable problem in general.

▪ But since programs typically use fixed-precision data types, non-linear 

arithmetic is decidable in this special case.



Limitations of concolic testing
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If program uses any kind of cryptography, symbolic execution will 

typically fail.

▪ Consider previous checksum example:

▪ CRC32 is linear and reversible – solver can “repair” checksum if rest of data 

is modified.

...

// Compute checksum for rest of ‘data’

computed_checksum = CRC32(data + 4, size – 4);

// Error if checksums don’t match

if(computed_checksum != saved_checksum)

return ERR_CODE; 

...

What if program 

used e.g. md5 or 

SHA256 here

instead?

Solver would get 

”stuck” trying to

solve this constraint!

Generation-based fuzzing could handle this without problem!



Greybox fuzzing
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▪ Probability of hitting a “deep” level of the code decreases exponentially 

with the “depth” of the code for mutation based fuzzing.

▪ Similarly, the time required for solving an SMT query is high, and 

increases exponentially with the depth of the path constraint.

▪ Black-box fuzzing is too “dumb” and whitebox fuzzing may be “too smart”

▪ Idea of greybox fuzzing is to find a sweet spot in between.

if(condtion1)

if(condtion2)

if(condtion3)

if(condtion4)

bug(); 

Mutational fuzzer would 

need to guess correct 

values of all four 

condtions in one go to 

reach bug!



Greybox fuzzing
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▪ Instead of recording full path constraint (as in whitebox fuzzing), record 

light-weight coverage information to guide fuzzing.

▪ Use evolutionary algorithms to “learn” input format.

▪ American Fuzzy Lop (AFL) is considered the current state-of-the art in 

fuzzing.

▪ Performs “regular” mutation-based fuzzing (using several different strategies) 

and measures code coverage.

▪ Every generated input that resulted in any new coverage is saved and later 

re-fuzzed

▪ This extremely simple evolutionary algorithm allows AFL to gradually 

“learn” how to reach deeper parts of the program.

▪ Also highly optimized for speed – can reach several thousand test cases per 

second.

▪ This often beats smarter (and slower) methods like whitebox fuzzing!

▪ Has found hundreds of serious vulnerabilities in open-source programs!



Conclusions
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Fuzzing – Black-box testing method. 

▪ Semi-random input generation.

▪ Despite being a brute-force, somewhat ad-hoc approach to security 

testing, experience has shown that it improves security in practice.

Concolic testing – White-box testing method. 

▪ Input generated from control-structure of code to systematically explore 

different paths of the program.

▪ Some in-house and academic implementations exist, but some 

challenges left to solve before widespread adoption.

Greybox fuzzing 

▪ Coverage-guided semi-random input generation.

▪ High speed sometimes beats e.g. concolic testing, but shares some 

limitations with mutation-based fuzzing (e.g. magic constants, 

checksums)



Conclusions
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▪ Test cases generated automatically, either semi-randomly or from 

structure of code

▪ Test cases not based on requirements

▪ Pro: Not “biased” by developers’ view of “how things should work”, 

can uncover unsound assumptions or corner cases not covered by 

specification.

▪ Con: Fuzzing and concolic testing mostly suited for finding 

implementation errors, e.g. buffer overflows, arithmetic overflows, etc.

▪ Generally hard to test for high-level errors in requirements and 

design using these methods



Conclusions
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▪ Different methods are good at finding different kinds of bugs, but 

none is a silver bullet.

▪ Fuzzing cannot be the only security assurance method used!

▪ Static analysis

▪ Manual reviews (code, design documents, etc.)

▪ Regular unit/integration/system testing!

▪ …


