

Regression Testing

Ajitha Rajan

Evolving Software

Large software systems are usually built incrementally:
• Maintenance - fixing errors and flaws, hardware changes
• Enhancements - new functionality, improved efficiency,

extension, new regulations

Program
v1

Program
v2

Program
v3

upgrade upgrade upgrade

Regressions

● Ideally, software should improve over time.
● But changes can both

– Improve software, adding features and fixing
bugs

– Break software, introducing new bugs

● We call such breaking changes regressions

Regression Testing

1. Develop P
2. Test P
3. Release P

Version 1

Version 2
4. Modify P to P'
5. Test P' for new functionality or bug fixing
6. Perform regression testing on P'
7.Release P'

(c) 2012 Prof. Eric Wong, UT Dallas

Example

Version 1

Feature A

Feature B

Tests

Version 2

Feature A

Feature B

Old
Tests

Feature C

+ New
Tests

Regression Tests for
the next version

Consequences of Poor Regression
Testing

● Thousands of 1-800 numbers disabled by a
poorly tested software upgrade (December
1991)

● Fault in an SS7 software patch causes
extensive phone outages (June 1991)

● Fault in a 4ESS upgrade causes massive
breakdown in the AT&T network (January
1990)

(c) 2012 Prof. Eric Wong, UT Dallas

AT&T Network Outage, Jan 1990

(c) 2012 Prof. Eric Wong, UT Dallas

Regression

● Yesterday it worked, today it doesn’t.
– I was fixing X, and accidentally broke Y

● Tests must be re-run after any change
– Adding new features

– Changing, adapting software to new conditions

– Fixing other bugs

● Regression testing can be a major cost of
software maintenance
– Sometimes much more than making the change

Regression Testing takes too long

Image from http://blog.kalistick.com/tools/improving-regression-testing-effectiveness/

Basic Problems of Regression Test

● Maintaining test suite
– If I change feature X, how many test cases must be revised

because they use feature X?

– Which test cases should be removed or replaced? Which
test cases should be added?

● Cost of re-testing
– Often proportional to product size, not change size

– Big problem if testing requires manual effort

– Possible problem even for automated testing, when the test
suite and test execution time grows beyond a few hours

(c) 2007 Mauro Pezzè & Michal Young

Test Case Maintenance

Some maintenance is inevitable
If feature X has changed, test cases for feature X will
require updating

Some maintenance should be avoided
Example: Trivial changes to user interface or file format
should not invalidate large numbers of test cases

Test suites should be modular!
Avoid unnecessary dependence

Generating concrete test cases from test case
specifications can help

Obsolete and Redundant

● Obsolete: A test case that is no longer valid
– Should be removed from the test suite

● Redundant: A test case that does not differ
significantly from others
– Unlikely to find a fault missed by similar test cases
– Has some cost in re-execution
– May or may not be removed, depending on costs

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 12

Regression Test Optimization

➔Re-test All

➔Regression Test Selection

➔Regression Test Set Minimisation

➔Regression Test Set Prioritisation

Re-test All Approach

● Traditional Approach – Select All
● The test-all approach is good when you want

to be certain that the new version works on all
tests developed for the previous version.

● What if you only have limited resources to run
tests and have to meet a deadline?

● Those on which the new and the old programs
produce different outputs (Undecidable)

Too Expensive!

(c) 2007 Mauro Pezzè & Michal Young

Regression Test Selection

From the entire test suite, only select subset of test cases whose
execution is relevant to changes

Tests Selected

Complete Set of Tests

Code-based Regression Test
Selection

● Observation: A test case can’t find a fault in
code it doesn’t execute
– In a large system, many parts of the code are

untouched by many test cases
● So: Only execute test cases that execute

changed or new code

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 16

Control-flow and Data-flow
Regression Test Selection

● Same basic idea as code-based selection
– Re-run test cases only if they include changed

elements
– Elements may be modified control flow nodes and

edges, or definition-use (DU) pairs in data flow
● To automate selection:

– Tools record elements touched by each test case
● Stored in database of regression test cases

– Tools note changes in program
– Check test-case database for overlap

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 17

Specification-based Regression
Test Selection

● Like code-based and structural regression test
case selection
– Pick test cases that test new and changed

functionality
● Difference: No guarantee of independence

– A test case that isn’t “for” changed or added feature
X might find a bug in feature X anyway

● Typical approach: Specification-based
prioritization
– Execute all test cases, but start with those that

related to changed and added features
(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 18

Example

Depth first traversal from node b = -a;

int main()
{

int a, b;
if (a>=0)

b = a;
else

b = -a;
assert(b >= 0);
return 0;

}

b=-a

assert(b>=0)

Forward Slice

b=-a

assert(b>=0)

b=a

If (a>=0)

int a,b

return 0

Control Dep.

Data Dep.
PDG

Slicing procedure

Program

int main(int argc, char* argv[]) {
 unsigned int num[5] = {12, 23, 4, 78, 34};
 unsigned int largest, counter = 0;
 while (counter < 5) {
 if (counter ==0)

largest = num[counter];
else if(largest > num[counter])

largest = num[counter];
++counter;

 }
 for (counter = 0; counter < 5; counter++)

assert(largest >= num[counter];
}

Computing the greatest in an array of integers

Construct Control Flow Graph

Program

Control Flow
Graph (CFG)

1

2

3

5

4

8

910

6

7

11 12

1314

15 16

17

T

T

T

F

F

F

Entry

End

Build a PDG

• Build a Program Dependence Graph (PDG)
that captures control and data
dependencies between nodes in CFG

Sample Data Dependency

For counter variable

1  2,3,4,5,6,7

7  2,3,4,5,6,7

int main(int argc, char* argv[]) {
 1 unsigned int num[5] = {12, 23, 4, 78, 34},
largest, counter = 0;
 2 while (counter <5) {
 3 if (counter ==0)
 4 largest = num[counter];
 5 else if(largest < num[counter])
 6 largest = num[counter];
 7 counter = counter +1;

 }
}

Sample Control Dependency

Conditional in statement 3

3  4, 5

int main(int argc, char* argv[]) {
 1 unsigned int num[5] = {12, 23, 4, 78, 34},
largest, counter = 0;
 2 while (counter <5) {
 3 if (counter ==0)
 4 largest = num[counter];
 5 else if(largest < num[counter])
 6 largest = num[counter];
 7 counter = counter +1;

 }
}

PDG for Example Program

2

5

8

6

14

12

10 15

9

11

13

167

Ctrl. Dep.

Data. Dep.

Slicing procedure (so far)

Program

Control Flow
Graph (CFG)

Prog. Dep.
Graph (PDG)

2

5

8

6

14

12

10 15

9

11

13

167

Slight change in the example

int main(int argc, char* argv[]) {
 unsigned int num[5] = {12, 23, 4, 78, 34},

largest, counter = 0;
 while (counter <5) {
 if (counter ==0)

largest = num[counter];
else if(largest > num[counter])

largest = num[counter];
++counter;

 }
 for (counter = 0; counter < 5;

counter++)
assert(largest >= num[counter];

}

Changed program

Forward Slicing from Changes

• Compute the nodes corresponding to
changed statements in the PDG, and

• Compute a transitive closure over all forward
dependencies (control + data) from these
nodes.

Forward Slice

Depth first traversal from changed node

y

x

z

else if(largest < num[counter])
largest = num[counter];

assert (largest >= num[counter];

Test Set Minimization

Identify test cases that are redundant and remove them from the test suite to
reduce its size.

Minimized Tests

Complete Set of Tests

Test Set Attributes

Coverage Size

Effectiveness Maximize

Structural Coverage

 (In)adequacy criteria
 If significant parts of program structure are not tested, testing is

surely inadequate

 Control flow coverage criteria
 Statement (node, basic block) coverage

 Branch (edge) coverage

 Condition coverage

 Path coverage

 Data flow (syntactic dependency) coverage

 Attempted compromise between the impossible and the
inadequate

Test Set Attributes

Coverage Size

Effectiveness Maximize

Test Set Attributes

● Higher Coverage -----> Better Fault Detection

● Bigger Size ------> Better Fault Detection

Better Correlated!

(c) 2012 Prof. Eric Wong, UT Dallas

Test Set Minimization

● Maximize coverage with minimum number of test cases
● The minimization algorithm can be exponential in time
● Does not occur in our experience

– Some examples
● an object-oriented language compiler (100 KLOC)
● a provisioning application (353 KLOC) with 32K regression tests
● a database application with 50 files (35 KLOC)
● a space application (10 KLOC)

● Stop after a pre-defined number of iterations
● Obtain an approximate solution by using a greedy heuristic

(c) 2012 Prof. Eric Wong, UT Dallas

Example

Sort test cases in order of increasing cost per additional coverage

Only 5 of the 62 test
cases are included in
the minimized
subset which has the
same block coverage
as the original test
set.

Test Set Prioritisation

● Sort test cases in order of increasing cost per
additional coverage

● Select the first test case
● Repeat the above two steps until n test cases

are selected or max cost is reached
(whichever is first)

(c) 2012 Prof. Eric Wong, UT Dallas

Example

● Individual decision coverage and cost per test case

(c) 2012 Prof. Eric Wong, UT Dallas

Example

● Prioritized cumulative decision coverage and cost per test case

Cost per additional coverage
10/23 = 0.43
(30-10)/(27-23) = 20/4 = 5.00
(40-30)/(29-27) = 10/2 = 5.00
(60-40)/(31-29) = 20/2 = 10.00
(100-60)/(32-31) = 40/1 = 40.00

Increasing
Order

(c) 2012 Prof. Eric Wong, UT Dallas

Prioritized Rotating Selection

● Basic idea:
– Execute all test cases, eventually
– Execute some sooner than others

● Possible priority schemes:
– Round robin: Priority to least-recently-run test

cases
– Track record: Priority to test cases that have

detected faults before
● They probably execute code with a high fault density

– Structural: Priority for executing elements that have
not been recently executed

● Can be coarse-grained: Features, methods, files, ... (c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 40

Summary

● Regression testing is an essential phase of
software product development.

● In a situation where test resources are limited
and deadlines are to be met, execution of all
tests might not be feasible.

● One can make use of different techniques for
selecting a subset of all tests to reduce the
time and cost for regression testing.

(c) 2012 Prof. Eric Wong, UT Dallas

