Regression Testing

AJjitha Rajan

Evolving Software

Large software systems are usually built incrementally:
* Maintenance - fixing errors and flaws, hardware changes
* Enhancements - new functionality, improved efficiency,
extension, new regulations

Program _upgrade Program upgrade |Program upgrade

vl v2 v3 |
14 7 7
Google n =SS microson
Cisco SYSTEMS
&\ MathWorks:

®

&, ' ‘®
WBARCLAYS &= R A
atat Adobe

Regressions

* |deally, software should improve over time.

* But changes can both

- Improve software, adding features and fixing
bugs

- Break software, introducing new bugs
 We call such breaking changes regressions

Regression Testing

Version 1

1. Develop P
2. Test P
3. Release P

Version 2

4. Modify P to P!

5. Test P' for new functionality or bug fixing
6. Perform regression testing on P’
/.Release P!

(c) 2012 Prof. Eric Wong, UT Dallas

Versionl > Version 2

Tests

Regression Tests for
the next version

Consequences of Poor Regression
Testing

 Thousands of 1-800 numbers disabled by a
poorly tested software upgrade (December
1991)

* Fault in an SS7 software patch causes
extensive phone outages (June 1991)

 Fault in a 4ESS upgrade causes massive
breakdown in the AT&T network (January
1990)

(c) 2012 Prof. Eric Wong, UT Dallas

AT&T Network Outage, Jan 1990

While (ring receive buffer | empty and side buffer | empty)
d
[nitialize pointer to first message in side buffer or ing received buffer
Get a copv of buffer
Switch (message) {
Case incoming message: if (sending switch = out of service)
{
if (ring write buffer = emptv)
Send in service to states map manager;
Else
Break:
12 !
13 Process incoming message, set up pointers to optional parameters
14 Break:;
15)
16 H
17 Do optional parameter work

18

= W S] Oy L e el Bl e

[e—
e B

(c) 2012 Prof. Eric Wong, UT Dallas

Regression

* Yesterday it worked, today it doesn't.
- | was fixing X, and accidentally broke Y

» Tests must be re-run after any change
- Adding new features

- Changing, adapting software to new conditions
- Fixing other bugs

* Regression testing can be a major cost of

software maintenance
- Sometimes much more than making the change

Regression Testing takes too long

A nightmare!

60 days /
| Regressiontesting
F1
/f'?
J

s

:
L New features testing
5 —
3 V4

F
vV

(/}

A0 days =4 JJ_.
j

.

F2
V1 V2

Image from http://blog.kalistick.com/tools/improving-regression-testing-effectiveness/

Basic Problems of Regression Test

* Maintaining test suite

- If | change feature X, how many test cases must be revised
because they use feature X?

- Which test cases should be removed or replaced? Which
test cases should be added?

» Cost of re-testing
- Often proportional to product size, not change size

- Big problem if testing requires manual effort

- Possible problem even for automated testing, when the test
suite and test execution time grows beyond a few hours

(c) 2007 Mauro Pezze & Michal Young

Test Case Maintenance

Some maintenance Is inevitable
If feature X has changed, test cases for feature X will
require updating

Some maintenance should be avoided
Example: Trivial changes to user interface or file format
should not invalidate large numbers of test cases

Test suites should be modular!
Avoid unnecessary dependence

Generating concrete test cases from test case
specifications can help

Obsolete and Redundant

* Obsolete: A test case that is no longer valid
— Should be removed from the test suite

* Redundant: A test case that does not differ
significantly from others
- Unlikely to find a fault missed by similar test cases
- Has some cost in re-execution
- May or may not be removed, depending on costs

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 12

Regression Test Optimization

>Re-test All
>»Regression Test Selection
>Regression Test Set Minimisation

>»Regression Test Set Prioritisation

Re-test All Approach

» Traditional Approach — Select All

to be certain that the new vers

Too Expensive!

* The test-all approach is good when you want

lon works on all

tests developed for the previous version.

 What Iif you only have limited resources to run

tests and have to meet a dead
e Those on which the new and t

line?
ne old programs

produce different outputs (Unc

(c) 2007 Mauro Pezze & Michal Young

ecidable)

Regression Test Selection

From the entire test suite, only select subset of test cases whose
execution is relevant to changes

~ Complete Set of Tests

- Tests Selected

Code-based Regression Test

Selection

* Observation: A test case can’t find a fault in
code It doesn’t execute

- In a large system, many parts of the code are
untouched by many test cases

* S0: Only execute test cases that execute
changed or new code

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 16

Control-flow and Data-flow

Regression Test Selection

e Same basic idea as code-based selection

- Re-run test cases only if they include changed
elements

- Elements may be modified control flow nodes and
edges, or definition-use (DU) pairs in data flow
* To automate selection:

— Tools record elements touched by each test case
* Stored in database of regression test cases

- Tools note changes in program
— Check test-case database for overlap

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 17

Specification-based Regression

Test Selection

* Like code-based and structural regression test
case selection

- Pick test cases that test new and changed
functionality
* Difference: No guarantee of independence
- Atest case that isn’t “for” changed or added feature
X might find a bug In feature X anyway
* Typical approach: Specification-based
prioritization
— EXxecute all test cases, but start with those that
related to changed and added features

(c) 2007 Mauro Pezze & Michal Young Ch 22, slide 18

—> Control Dep.

PDG

— 5 Data Dep.

b=-a

b=a

AN /

4 »
‘ assert(b>=0)
‘ return O

Forward Slice

Depth first traversal from node b = -a;

®..

/

‘ assert(b>=0)

Slicing procedure

Program

Computing the greatest in an array of integers

int main(int argc, char* argv(]) {
unsigned int num[5] = {12, 23, 4, 78, 34},
unsigned int largest, counter = O;
while (counter < 5) {
if (counter ==0)
largest = num[counter];
else if(largest > num[counter])
largest = num[counter];
++counter;
}
for (counter = O; counter < 5; counter++)
assert(largest >= num[counter];

Construct Control Flow Graph

Entry

Program

Control Flow
Graph (CFG)

End

Build a PDG

* Build a Program Dependence Graph (PDG)
that captures control and data
dependencies between nodes in CFG

Sample Data Dependency

int main(int argc, char* argv(]) {
1 unsigned int num[5] = {12, 23, 4, 78, 34},
largest, counter = 0;
2 while (counter <5) {
if (counter ==0)
largest = num[counter];
else if(largest < num[counter])
largest = num[counter];
counter = counter +1;

For counter variable
1 2 2,345,6,7
7> 2,345,6,7

~NOo O b W

Sample Control Dependency

int main(int argc, char* argv[]) {
1 unsigned int num[5] = {12, 23, 4, 78, 34},
largest, counter = 0;

Conditional in statement 3 2 while (counter <5) {

34,5 3 if (counter ==0)
4 largest = num[counter];
5 else if(largest < num[counter])
6 largest = num[counter];
7 counter = counter +1;

}
}

PDG for Example Program

Slicing procedure (so far

|
St

Control Flow
Graph (CFG)

|

Prog. Dep.
Graph (PDG)

Slight change in the example

Changed program

Forward Slicing from Changes

* Compute the nodes corresponding to
changed statements in the PDG, and

* Compute a transitive closure over all forward
dependencies (control + data) from these
nodes.

Forward Slice

Depth first traversal from changed node

else if(largest < num[counter])
largest = num[counter];
assert (largest >= num[counter];

@<_

Test Set Minimization

|dentify test cases that are redundant and remove them from the test suite to
reduce its size.

“““‘\\\\\\;‘Complete Set of Tests

Minimized Tests

Test Set Attributes

.47 o

Structural Coverage

® (In)adequacy criteria

If significant parts of program structure are not tested, testing is
surely inadequate

= Control flow coverage criteria
Statement (node, basic block) coverage
Branch (edge) coverage
Condition coverage
Path coverage
Data flow (syntactic dependency) coverage

® Attempted compromise between the impossible and the
Inadequate

Test Set Attributes

.47 o

Test Set Attributes

* Higher Coverage ----- > Better Fault Detection

* Bigger Size ------ > Better Fault Detection

Better Correlated!

(c) 2012 Prof. Eric Wong, UT Dallas

Test Set Minimization

Maximize coverage with minimum number of test cases
The minimization algorithm can be exponential in time
Does not occur in our experience

- Some examples

e an object-oriented language compiler (100 KLOC)

 a provisioning application (353 KLOC) with 32K regression tests
« a database application with 50 files (35 KLOC)

» a space application (10 KLOC)

Stop after a pre-defined number of iterations
Obtain an approximate solution by using a greedy heuristic

(c) 2012 Prof. Eric Wong, UT Dallas

Example

Sort test cases in order of increasing cost per additional coverage

File Tool oOptions Summary TestCases Update GoBack Help
| function entry M block _| decision _| ¢_use _| p_use Disable Hinimize_in‘
cumilative cowverage summary by testcase owver selected cowerage types | Only 5 Of the 62 test
AY HO2.1 43 of 112 = 1 1
° cases are included in
TO7.1 54 of 112 _ .
4>
v ot 11 the m|n|m|_zed
NO3.1 73 of 112 N\ subset which has the
N
T19.1 75 of 112 ~—_ same block coverage
TO1.1 5% of 112 101
° as the original test
TO2.1 5% of 112 Set
TO3.1 75 of 112 '
TO4.1 75 of 112
TO5.1 5% of 112
TO6. 1 7% of 112
|/ T09.1 A 75 of 112
total | 75 of 112

Coverage: Test cases:
block 5 of B2

X Regress

Test Set Prioritisation

e Sort test cases in order of increasing cost per
additional coverage

e Select the first test case

 Repeat the above two steps until n test cases
are selected or max cost is reached
(whichever is first)

(c) 2012 Prof. Eric Wong, UT Dallas

Example

 |ndividual decision coverage and cost per test case

¥ atac —-K -md main.,atac wc,atac wordcocount ,trace

cost 4 decizions test

120 B 2030 wordocount. . 1
Ll 1144735 wordcount. , 2
20 9417350 wordcount. . 3
10 1144535 wordocount. 4
40 F1e25435) wordocount B
(=18 BOLZ1/ 350 wordocount. b
a0 1164 /35) wordcount. , 7
20 bE{Z24/30) wordocount. .2

10 b {23/ 30 wordocount. .9
0 BO{21/35) wordcount. , 10

a1l BOLZL 50 wordocount, 11
el BOL21/35) wordocount. , 12
il 2007 AR wordocount. , 13
40 14¢5/35) wordcount. , 1<
(=18 BOLZ21/35 wordocount. , 15
20 2heS /350 wordcount. , 16
150 B {1935 wordocount. 17
S0 100035 == all ==

(c) 2012 Prof. Eric Wong, UT Dallas

Example

e Prioritized cumulative decision coverage and cost per test case

$ atac -G -md main,atac wc,atac wordcount ,trace

cost
{cum

4 decizions
icumulative)

B (237307
FEF 3R
g3429/35)
890(31/303
91052/35)
84 ¢33/35
97 (ad/300
1006357
1006353
1006357
1006357
1006357
1006357
1006353
1006357
1006357
1006353

test

Cost per additional coverage
wordoount. 9 <€«—— 10/23 = 0.43

wordocount .2 <€ (30-10)/(27-23) = 20/4 = 5.00
wordcount .4 <4 (40-30)/(29-27) = 10/2 = 5.00
wordocount. .8 <4 (60-40)/(31-29) = 20/2 = 10.00

wordocount. .5 <€—— (100-60)/(32-31) = 40/1 = 40.00 \

wordcount , 14
wordcount., 15
wordcount., f
wordcount , 16
wordocount. , 2
wordocount , 12
wordcount. 11
wordcount. , 13
wordcount. b
wordcount., 10
wordoount., 1
wordcount 17

Increasing
Order

(c) 2012 Prof. Eric Wong, UT Dallas

Prioritized Rotating Selection

e Basic idea:
— EXxecute all test cases, eventually
- Execute some sooner than others

* Possible priority schemes:

— Round robin: Priority to least-recently-run test
cases

— Track record: Priority to test cases that have
detected faults before
* They probably execute code with a high fault density

— Structural: Priority for executing elements that have

not been recently executed
o0 &an be coarse-grained: Features, methods, files,

Ch' 22, slide 40

Summary

* Regression testing is an essential phase of
software product development.

e |n a situation where test resources are limited
and deadlines are to be met, execution of all
tests might not be feasible.

* One can make use of different techniques for
selecting a subset of all tests to reduce the
time and cost for regression testing.

(c) 2012 Prof. Eric Wong, UT Dallas

