
Path Coverage

● Other criteria focus on single elements.
○ However, all tests execute a sequence of elements -

a path through the program.

○ Combination of elements matters - interaction
sequences are the root of many faults.

● Path coverage requires that all paths
through the CFG are covered.

● Coverage = Number of Paths Covered
Number of Total Paths

Gregory Gay CSCE 747 - Spring 2016 3

Path Coverage
i=0

i<N and A[i]
<X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

int flipSome(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}

i++

In theory, path coverage is the ultimate coverage metric.
In practice, it is impractical.
● How many paths does this program have?

Gregory Gay CSCE 747 - Spring 2016 4

How many cases
for

Statement
Branch
Path

Path Testing

loop <= 20

Gregory Gay CSCE 747 - Spring 2016 5

Number of Tests

Path coverage for that loop bound requires:
3,656,158,440,062,976 test cases

If you run 1000 tests per second, this will
take 116,000 years.

However, there are ways to get some of the
benefits of path coverage without the cost...

Gregory Gay CSCE 747 - Spring 2016 6

Path Coverage

● Theoretically, the strongest coverage metric.
○ Many faults emerge through sequences of

interactions.

● But… Generally impossible to achieve.
○ Loops result in an infinite number of path variations.

○ Even bounding number of loop executions leaves an
infeasible number of tests.

Gregory Gay CSCE 747 - Spring 2016 7

Boundary Interior Coverage

● Need to partition the infinite set of paths into
a finite number of classes.

● Boundary Interior Coverage groups paths
that differ only in the subpath they follow
when repeating the body of a loop.
○ Executing a loop 20 times is a different path than

executing it twice, but the same subsequences of
statements repeat over and over.

Gregory Gay CSCE 747 - Spring 2016 8

Boundary Interior Coverage

Gregory Gay CSCE 747 - Spring 2016 9

A

B

M C

D E

F G

H I

L

A

B

M C

D E

F G

H I

L L

L

L

B

BB

B

B -> M

B -> C -> E -> L -> B

B -> C -> D -> F -> L -> B

B -> C -> D -> G -> H -> L -> B

B -> C -> D -> G -> I -> L -> B

Number of Paths
● Boundary Interior Coverage

removes the problem of
infinite loop-based paths.

● However, the number of
paths through this code can
still be exponential.
○ N non-loop branches results

in 2N paths.
● Additional limitations may

need to be imposed on the
paths tested.

if (a) S1;

if (b) S2;

if (c) S3;

…

if (x) SN;

Gregory Gay CSCE 747 - Spring 2016 10

Loop Boundary Coverage
● Focus on problems related to loops.
● Cover scenarios representative of how loops might

be executed.
● For simple loops, write tests that:

○ Skip the loop entirely.
○ Take exactly one pass through the loop.
○ Take two or more passes through the loop.
○ (optional) Choose an upper bound N, and:

■ M passes, where 2 < M < N
■ (N-1), N, and (N+1) passes

Gregory Gay CSCE 747 - Spring 2016 11

Nested Loops
● Often, loops are nested within other loops.
● For each level, you should execute similar

strategies to simple loops.
● In addition:

○ Test innermost loop first with outer loops
executed minimum number of times.

○ Move one loops out, keep the inner loop at
“typical” iteration numbers, and test this
layer as you did the previous layer.

○ Continue until the outermost loop tested.

Gregory Gay CSCE 747 - Spring 2016 12

Concatenated Loops
● One loop executes. The next line of code

starts a new loop.
● These are generally independent.

○ Most of the time...
● If not, follow a similar strategy to nested

loops.

○ Start with bottom loop, hold higher loops
at minimal iteration numbers.

○ Work up towards the top, holding lower
loops at “typical” iteration numbers.

Gregory Gay CSCE 747 - Spring 2016 13

Why These Loop Strategies?

● In proving formal correctness of a loop, we would establish
preconditions, postconditions, and invariants that are true on
each execution of the loop, then prove that these hold.
○ The loop executes zero times when the postconditions

are true in advance.
○ The loop invariant is true on loop entry (one), then each

loop iteration maintains the invariant (many).
■ (invariant and !(loop condition) implies postconditions)

● Loop testing strategies echo these cases.

Why do these loop values make sense?

Gregory Gay CSCE 747 - Spring 2016 14

Linear Code Sequences and Jumps
● Often, we want to reason about the

subpaths that execution can take.
● A subpath from one branch of control

to another is called a LCSAJ.
● The LCSAJs for this example:

Gregory Gay CSCE 747 - Spring 2016 15

From To Sequence of Basic Blocks

entry j1 b1, b2, b3

entry j2 b1, b2, b3, b4, b5

entry j3 b1, b2, b3, b4, b5, b6, b7

j1 return b8

j2 j3 b7

j3 j2 b3, b4, b5

j3 j3 b3, b4, b5, b6, b7

collapseNewlines(String
argSt)

char last = argStr.charAt(0);
StringBuffer argBuf = new
StringBuffer();
int cldx = 0;

cldx <
argStr.
length()
;

char ch = argStr.charAt
(cldx);

T

return argBuf.toString();

F

(ch != ‘\n’
|| last !=
‘\n’)

argBuf.append(ch);
last = ch;

T
cldx++;

F

J1

J2

J3

B1

B2

B3

B4

B5

B6 B7

B8

LCSAJ Coverage
● We can require coverage of all sequences of LCSAJs of

length N.
○ We can string subpaths into paths that connect N subpaths.
○ LCSAJ Coverage (N=1) is equivalent to statement coverage.
○ LCSAJ Coverage (N=2) is equivalent to branch coverage

● Higher values of N achieve stronger levels of path
coverage.

● Can define a threshold that offers stronger tests while
remaining affordable.

Gregory Gay CSCE 747 - Spring 2016 16

Procedure Call Testing

● Metrics covered to this point all look at code
within a procedure.

● Good for testing individual units of code, but
not well-suited for integration testing.
○ i.e., subsystem or system testing, where we bring

together units of code and test their combination.
● Should also cover connections between

procedures:
○ calls and returns.

Gregory Gay CSCE 747 - Spring 2016 17

Entry and Exit Testing
● A single procedure may

have several entry and
exit points.
○ In languages with goto

statements, labels allow
multiple entry points.

○ Multiple returns mean
multiple exit points.

● Write tests to ensure
these entry/exit points
are entered and exited
in the context they are
intended to be used.

Gregory Gay CSCE 747 - Spring 2016 18

int status (String str){

if(str.equals(”panic”))

return 0;

else if(str.contains(“+”))

return 1;

else if(str.contains(“-”))

return 2;

else

return 3;

}

● Finds interface errors
that statement coverage
would not find.

Call Coverage
● A procedure might be

called from multiple
locations.

● Call coverage requires
that a test suite
executes all possible
method calls.

● Also finds interface
errors that
statement/branch
coverage would not find.

Gregory Gay CSCE 747 - Spring 2016 19

void orderPizza (String str){

if(str.contains(”pepperoni”))

addTopping(“pepperoni”);

if(str.contains(“onions”))

addTopping(“onions”);

if(str.contains(“mushroom”))

addTopping(“mushroom”)

}

● Challenging for OO
systems, where a
method call might be
bound to different
objects at runtime.

Activity:
Writing Loop-Covering Tests

For the binary-search code:
1. Draw the control-flow graph for the method.
2. Identify the subpaths through the loop and

draw the unfolded CFG for boundary interior
testing.

3. Develop a test suite that achieves loop
boundary coverage.

Gregory Gay CSCE 747 - Spring 2016 20

CFG

int bott, top, mid;
bott=0; top=size-1;
L = 0;

T[L]
==
key

found=false;found=true;

FT

bott<=to
p && !
found

EXIT
F

mid=round
(top+bott/2);

T

T[mid]
== key

found=true;
L= mid;

T

T[mid]
< key

F

bott=mid+1;

top=mid-1;

T

F

Gregory Gay CSCE 747 - Spring 2016 21

CFG

A

B

DC

FT

EXIT

F

F

T

G

H
T

I

F J

K

T

F

Gregory Gay CSCE 747 - Spring 2016 22

E

E -> EXIT

E -> F -> G -> H -> E

E -> F -> G -> I -> J -> E

E -> F -> G -> I -> K -> E

CFG

A

B

DC

FT

EXIT

F

F

T

G

H
T

I

F J

K

T

F

Gregory Gay CSCE 747 - Spring 2016 23

E

E -> EXIT

E -> F -> G -> H -> E

E -> F -> G -> I -> J -> E

E -> F -> G -> I -> K -> E

E

E

E

CFG

A

B

DC

FT

EXIT

F

F

T

G

H
T

I

F J

K

T

F

Gregory Gay CSCE 747 - Spring 2016 24

E

Tests that execute the loop:
● 0 times
● 1 time
● 2+ times

key = 1, T = [1], size = 1
key = 2, T = [1, 2], size = 2
key = 3, T = [1, 2, 3], size = 3

Cyclomatic Testing

● Generally, there are many options for the set
of basis subpaths.

● When testing, count the number of
independent paths that have already been
covered, and add any new subpaths covered
by the new test.
○ You can identify allpaths with a set of independent

subpaths of size = the cyclomatic complexity.

Gregory Gay CSCE 747 - Spring 2016 15

Uses of Cyclomatic Complexity

● A way to guess “how much testing is enough”.
○ Upper bound on number of tests for branch coverage.
○ Lower bound on number of tests for path coverage.

● Used to refactor code.
○ Components with a complexity > some threshold

should be split into smaller modules.

○ Based on the belief that more complex code is more
fault-prone.

Gregory Gay CSCE 747 - Spring 2016 16

