
Model based testing

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 1

y nt
ly

e s

 Id
en

tif
y

In
de

pe
nd

e
Te

st
ab

le
Fe

at
ur

es

Generate Test-C

Specifica erate Test-
Case

ific
ations

t-Case

cations Genera

Specifi

G
en

er
at

e
Te

st
 C

as
es

In
st

an
tia

te
Te

st
s

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 3

Why model-based testing?Why model-based testing?

• Models used in specification or design have • Models used in specification or design have
structure

• Useful information for selecting representative classes of g p
behavior; behaviors that are treated differently with
respect to the model should be tried by a thorough test
suite

• In combinatorial testing, it is difficult to capture that
structure clearly and correctly in constraints

• We can devise test cases to check actual • We can devise test cases to check actual
behavior against behavior specified by the
modelmodel

• “Coverage” similar to structural testing, but applied to
specification and design models

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 4

Deriving test cases from finite stateDeriving test cases from finite state
machines

A common kind of model for
describing behavior that depends on
sequences of events or stimuliq
Example: UML state diagrams

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 5

From an informal specification…
Maintenance: The Maintenance function records the history of items undergoing
maintenance.
If the product is covered by warranty or maintenance contract, maintenance can be M ltiple choices in the first stepp y y ,
requested either by calling the maintenance toll free number, or through the web site, or
by bringing the item to a designated maintenance station.
If the maintenance is requested by phone or web site and the customer is a US or EU
resident, the item is picked up at the customer site, otherwise, the customer shall ship the

Multiple choices in the first step
...

item with an express courier.
If the maintenance contract number provided by the customer is not valid, the item follows
the procedure for items not covered by warranty.
If the product is not covered by warranty or maintenance contract, maintenance can be

... determine the possibilities
for the next step ... p y y ,

requested only by bringing the item to a maintenance station. The maintenance station
informs the customer of the estimated costs for repair. Maintenance starts only when the
customer accepts the estimate.
If the customer does not accept the estimate, the product is returned to the customer.and so onSmall problems can be repaired directly at the maintenance station. If the maintenance
station cannot solve the problem, the product is sent to the maintenance regional
headquarters (if in US or EU) or to the maintenance main headquarters (otherwise).
If the maintenance regional headquarters cannot solve the problem, the product is sent to

... and so on ...

g q p , p
the maintenance main headquarters.
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 6

NO
Maintenance

at reb

0

…to a finite
stateM i t

request at

maintenance station

(no warranty)

request
by phone or web

[US or EU resident]

(contract number)

st
 a

t
ce

 s
ta

tio
n

ss
 c

ou
rie

r
nu

m
be

r)

W it f

pick up return

1 2 3 state
machine…

 Maintenance
(no warranty)

tim
at

e
os

ts

Wait for
pick up

pick up

re
qu

es
m

ai
nt

en
an

c
or

 b
y

ex
pr

es
(c

on
tra

ct
 nWait for

returning

reject e

invalidcontract
numbe

3

es
t co

Repair
(maintenance

station)

pick

Wait for
acceptance

accept
estimate

t estimate

Repairedrepair completed

ber

4 5 6

succe
ssf

ul re
pair

unable to repair

(US or EU residck
co

mponent (a
)

component
arrives (a)

Repair
(regional

headquarters)

suirident)

su
cc

es
sfu

l r
ep

air

Wait for
component

lack

lack component (b)

arrives (a)

7 8

su

unable to
repair

lack component (component

component
arrives (b)

unable to repair
(not US or EU resident)

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 7

Repair
(main

headquarters)

nt (c)
p

arrives (c)
9

to a test suite…to a test suite

TC1 0 2 4 1 0

Meaning: From state 0 to state
2 to state 4 to state 1 to state 0

TC2 0 5 2 4 5 6 0

TC3 0 3 5 9 6 0

TC4 0 3 5 7 5 8 7 8 9 6 0

Is this a thorough test suite?
How can we judge?

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 8

“Covering” finite state machinesCovering finite state machines

• State coverage: • State coverage:
– Every state in the model should be visited by at least

one test caseone test case

• Transition coverage
E t iti b t t t h ld b t d – Every transition between states should be traversed
by at least one test case.
This is the most commonly used criterion– This is the most commonly used criterion

• A transition can be thought of as a (precondition,
postcondition) pairp) p

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 10

Path sensitive criteria?Path sensitive criteria?

• Basic assumption: States fully summarize history• Basic assumption: States fully summarize history
• No distinction based on how we reached a state; this should be

true of well-designed state machine models

• If the assumption is violated, we may distinguish paths
and devise criteria to cover them

Si l t t th – Single state path coverage:
• traverse each subpath that reaches each state at most once

– Single transition path coverage: g p g
• “” “” each transition at most once

– Boundary interior loop coverage:
h di i l f h hi b i d h • each distinct loop of the state machine must be exercised the

minimum, an intermediate, and the maximum or a large number
of times

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 11

• Of the path sensitive criteria, only boundary-interior is common

Testing decision structures

Some specifications are structured as p
decision tables, decision trees, or flow

charts. We can exercise these as if
they were program source code.

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 12

…to a decision table ……to a decision table …

edu individualedu individual
EduAc T T F F F F F F
BusAc F F F F F FBusAc - - F F F F F F
CP > CT1 - - F F T T - -
YP YT1YP > YT1 - - - - - - - -
CP > CT2 - - - - F F T T
YP > YT2 - - - - - - - -
SP < Sc F T F T - - - -
SP < T1 - - - - F T - -
SP < T2 - - - - - - F T

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 14

out Edu SP ND SP T1 SP T2 SP

Example MC/DC Generate C 1a andExample MC/DC
C.1 C.1a C.1b C.10

Generate C.1a and
C.1b by flipping one

element of C.1

EduAc T F T -
BusAc - - - TBusAc T
CP > CT1 - - - F
YP > YT1 - - - F

C.1b can be merged
with an existing

column (C 10) in theYP > YT1 - - - F
CP > CT2 - - - -
YP > YT2

column (C.10) in the
spec

YP > YT2 - - - -
SP > Sc F F T T
SP > T1

Outcome of
generated columnsSP > T1 - - - -

SP > T2 - - - -

generated columns
must differ from
source column

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 17

out Edu * * SP

Summary: The big pictureSummary: The big picture

• Models are useful abstractions• Models are useful abstractions
– In specification and design, they help us think and

communicate about complex artifacts by p y
emphasizing key features and suppressing details

– Models convey structure and help us focus on one
thi t tithing at a time

• We can use them in systematic testing
If d l di id b h i i t l b bl – If a model divides behavior into classes, we probably
want to exercise each of those classes!

– Common model-based testing techniques are based Common model based testing techniques are based
on state machines, decision structures, and
grammars

(c) 2007 Mauro Pezzè & Michal Young Ch 14, slide 34

• but we can apply the same approach to other models

Testing Object Oriented Software

Chapter 15p

Characteristics of OO Software

15.2

Characteristics of OO Software
Typical OO software characteristics that impact

itesting
• State dependent behavior
• Encapsulation
• Inheritance
• Polymorphism and dynamic binding
• Abstract and generic classesAbstract and generic classes
• Exception handling

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 3

Quality activities and OO SWQuality activities and OO SW

w
R

ev
ie

w

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 4

OO definitions of unit and integration
testing

• Procedural software
it i l f ti d – unit = single program, function, or procedure

more often: a unit of work that may correspond to one or more intertwined
functions or programs

• Object oriented software
– unit = class or (small) cluster of strongly related classes

(e.g., sets of Java classes that correspond to exceptions)(g p p)
– unit testing = intra-class testing
– integration testing = inter-class testing (cluster of classes)

– dealing with single methods separately is usually too expensive (complex
scaffolding), so methods are usually tested in the context of the class they
belong tobelong to

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 5

Orthogonal approach: Stages
15.3

g pp g

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 6

Intraclass State Machine Testing

15.4/5

Intraclass State Machine Testing

• Basic idea: • Basic idea:
– The state of an object is modified by operations

Methods can be modeled as state transitions– Methods can be modeled as state transitions
– Test cases are sequences of method calls that

traverse the state machine modeltraverse the state machine model

• State machine model can be derived from
specification (functional testing) code specification (functional testing), code
(structural testing), or both

h i d d i bi di
(c) 2008 Mauro Pezzè & Michal Young

[Later: Inheritance and dynamic binding]
Ch 15, slide 7

Informal state-full specificationsInformal state-full specifications

Slot: represents a slot of a computer model. Slot: represents a slot of a computer model.
.... slots can be bound or unbound. Bound slots are
assigned a compatible component, unbound slots are
empty. Class slot offers the following services:

• Install: slots can be installed on a model as required or
optionaloptional.
...

• Bind: slots can be bound to a compatible component.p p
...

• Unbind: bound slots can be unbound by removing the
b d tbound component.

• IsBound: returns the current binding, if bound;
otherwise returns the special value empty

(c) 2008 Mauro Pezzè & Michal Young

otherwise returns the special value empty.

Ch 15, slide 8

Identifying states and transitionsIdentifying states and transitions

• From the informal specification we can identify • From the informal specification we can identify
three states:

Not installed– Not_installed
– Unbound

B d– Bound

• and four transitions
– install: from Not_installed to Unbound
– bind: from Unbound to Bound
– unbind: ...to Unbound
– isBound: does not change state

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 9

Deriving an FSM and test casesDeriving an FSM and test cases

i B d

Not present Unbound Bound
1 20

isBound

unBind
incorporate

Not present Unbound Bound
isBound

bind

unBind

• TC-1: incorporate, isBound, bind, isBound
• TC-2: incorporate, unBind, bind, unBind, isBoundp , , , ,

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 10

Testing with State DiagramsTesting with State Diagrams

• A statechart (called a “state diagram” in UML) • A statechart (called a state diagram in UML)
may be produced as part of a specification or
designdesign

• May also be implied by a set of message sequence charts
(interaction diagrams), or other modeling formalisms(g), g

• Two options:
– Convert (“flatten”) into standard finite-state Convert (flatten) into standard finite state

machine, then derive test cases
– Use state diagram model directlyg y

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 11

Interclass Testing

15.6

Interclass Testing

• The first level of integration testing for object• The first level of integration testing for object-
oriented software

Focus on interactions between classes– Focus on interactions between classes

• Bottom-up integration according to “depends”
l tirelation

– A depends on B: Build and test B, then A

• Start from use/include hierarchy
– Implementation-level parallel to logical “depends” relation

Cl A k th d ll l B• Class A makes method calls on class B
• Class A objects include references to class B methods

– but only if reference means “is part of”but only if reference means is part of

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 15

OrderCustomer

1 *

Account

1 0..*

Package

1 *

LineItem

1

*
USAccount OtherAccount

CustomerCare

*

*

SimpleItem
UKAccountJPAccount EUAccount

CompositeItem

Model ComponentPriceList

*
*

*
*

from a class
diagram

Model Component

1 * 1 0..1

PriceList

* *diagram... Slot

1
*
1 1

ModelDB ComponentDBSlotDB

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 16

CSVdb

to a hierarchy....to a hierarchy
OrderCustomer Package

Component
USAccount OtherAccount

P i Li t ComponentPriceListCustomerCare

Model
UKAccountJPAccount EUAccount

ComponentDB

Slot

M d lDBNote: we may have ModelDB SlotDBNote: we may have
to break loops and
generate stubs

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 17

g

Interactions in Interclass TestsInteractions in Interclass Tests
• Proceed bottom-upp
• Consider all combinations of interactions

example: a test case for class Order includes a call to – example: a test case for class Order includes a call to
a method of class Model, and the called method calls
a method of class Slot, exercise all possible relevant , p
states of the different classes

– problem: combinatorial explosion of cases
– so select a subset of interactions:

• arbitrary or random selection
• plus all significant interaction scenarios that have been

previously identified in design and analysis: sequence +
collaboration diagrams

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 18

g

sequence diagram

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 19

Using Structural Information

15.7

Using Structural Information

• Start with functional testing• Start with functional testing
– As for procedural software, the specification (formal

or informal) is the first source of information for or informal) is the first source of information for
testing object-oriented software

• “Specification” widely construed: Anything from a p y y g
requirements document to a design model or detailed
interface description

Th dd i f ti f th d (t t l • Then add information from the code (structural
testing)
– Design and implementation details not available

from other sources

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 20

From the implementation ...
public class Model extends Orders.CompositeItem {
....

private boolean legalConfig = false; // memoized private instance private boolean legalConfig false; // memoized
....

public boolean isLegalConfiguration() {
if (! legalConfig) {

variable

if (! legalConfig) {
checkConfiguration();

}
t l lC fi return legalConfig;

}
.....

i h dprivate void checkConfiguration() {
legalConfig = true;
for (int i=0; i < slots.length; ++i) {

private method

(; g ;) {
Slot slot = slots[i];
if (slot.required && ! slot.isBound()) {

legalConfig = false;

(c) 2008 Mauro Pezzè & Michal Young

legalConfig false;
} ...} ... }

...... Ch 15, slide 21

Intraclass data flow testingIntraclass data flow testing

• Exercise sequences of methods • Exercise sequences of methods
– From setting or modifying a field value

To using that field value– To using that field value

W d l fl h h • We need a control flow graph that encompasses
more than a single method ...

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 22

The intraclass control flow graphThe intraclass control flow graph
Control flow for each method
+
node for class
+

Method
addComponent

Method
selectModel

edges
from node class to the start

nodes of the methods
from the end nodes of the

methods to node class Method
checkConfiguration

=> control flow through sequences
of method calls

g

class Model

(c) 2008 Mauro Pezzè & Michal Young

class Model

Ch 15, slide 23

Interclass structural testingInterclass structural testing

• Working “bottom up” in dependence hierarchy• Working bottom up in dependence hierarchy
• Dependence is not the same as class hierarchy; not always

the same as call or inclusion relation.
• May match bottom-up build order

– Starting from leaf classes, then classes that use leaf
classes, ...

• Summarize effect of each method: Changing or
using object state, or bothg j ,
– Treating a whole object as a variable (not just

primitive types)

(c) 2008 Mauro Pezzè & Michal Young

p yp)

Ch 15, slide 24

15.9

Polymorphism and dynamic binding

One variable potentially bound to One variable potentially bound to p yp y
methods of different (submethods of different (sub--)classes)classes

“Isolated” calls: the combinatorial
explosion problem

abstract class Credit {
...

abstract boolean validateCredit(Account a, int amt, CreditCard c);
...
}

USAccount
UKAccount
EUAccount

EduCredit
BizCredit
IndividualCredit

VISACard
AmExpCard
StoreCard

JPAccount
OtherAccount

The combinatorial problem: 3 x 5 x 3 = 45 possible combinations
of dynamic bindings (just for this one method!)

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 39

The combinatorial approachThe combinatorial approach
Account Credit creditCard

USAccount EduCredit VISACard
Identify a set of

USAccount EduCredit VISACard
USAccount BizCredit AmExpCard
USAccount individualCredit ChipmunkCard

y
combinations that
cover all pairwise

bi ti f UKAccount EduCredit AmExpCard
UKAccount BizCredit VISACard
UKAccount individualCredit ChipmunkCard

combinations of
dynamic bindings

UKAccount individualCredit ChipmunkCard
EUAccount EduCredit ChipmunkCard
EUAccount BizCredit AmExpCard
EUAccount individualCredit VISACard
JPAccount EduCredit VISACard
JPAccount BizCredit ChipmunkCardJPAccount BizCredit ChipmunkCard
JPAccount individualCredit AmExpCard
OtherAccount EduCredit ChipmunkCard

Same motivation as
pairwise specification-
b d t ti

(c) 2008 Mauro Pezzè & Michal Young

OtherAccount BizCredit VISACard
OtherAccount individualCredit AmExpCard

based testing

Ch 15, slide 40

Inheritance

15.10

Inheritance

• When testing a subclass • When testing a subclass ...
– We would like to re-test only what has not been

thoroughly tested in the parent classthoroughly tested in the parent class
• for example, no need to test hashCode and getClass

methods inherited from class Object in Java

– But we should test any method whose behavior may
have changed

• even accidentally!

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 44

Reusing Tests
with the Testing History Approach

• Track test suites and test executions
– determine which new tests are needed
– determine which old tests must be re-executed

• New and changed behavior ...New and changed behavior ...
– new methods must be tested
– redefined methods must be tested but we can redefined methods must be tested, but we can

partially reuse test suites defined for the ancestor
– other inherited methods do not have to be retestedother inherited methods do not have to be retested

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 45

Testing historyTesting history

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 46

Inherited unchangedInherited, unchanged

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 47

Newly introduced methodsNewly introduced methods

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 48

Overridden methodsOverridden methods

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 49

Testing History – some detailsTesting History – some details

• Abstract methods (and classes)• Abstract methods (and classes)
– Design test cases when abstract method is

introduced (even if it can’t be executed yet)introduced (even if it can t be executed yet)

• Behavior changes
Sh ld id th d “ d fi d” if th – Should we consider a method “redefined” if another
new or redefined method changes its behavior?

• The standard “testing history” approach does not do this• The standard testing history approach does not do this
• It might be reasonable combination of data flow (structural)

OO testing with the (functional) testing history approach

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 50

Testing History - SummaryTesting History - Summary

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 51

Does testing history help?Does testing history help?

• Executing test cases should (usually) be cheap• Executing test cases should (usually) be cheap
– It may be simpler to re-execute the full test suite of

the parent classthe parent class
– ... but still add to it for the same reasons

But sometimes execution is not cheap • But sometimes execution is not cheap ...
– Example: Control of physical devices

O l t t it– Or very large test suites
• Ex: Some Microsoft product test suites require more than

one night (so daily build cannot be fully tested)one night (so daily build cannot be fully tested)

– Then some use of testing history is profitable

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 52

Exception handling

15.12

Exception handling
void addCustomer(Customer theCust) {

customers.add(theCust);
exceptions

create implicit customers.add(theCust);
}
public static Account

newAccount(...)

create implicit
control flows
and may be
handled by

throws InvalidRegionException
{

Account thisAccount = null;

handled by
different
handlers

String regionAbbrev = Regions.regionOfCountry(
mailAddress.getCountry());

if (regionAbbrev == Regions.US) {
thisAccount = new USAccount();

} else if (regionAbbrev == Regions.UK) {
....

i i i i} else if (regionAbbrev == Regions.Invalid) {
throw new

InvalidRegionException(mailAddress.getCountry());
}

(c) 2008 Mauro Pezzè & Michal Young

}
...

} Ch 15, slide 59

Testing exception handlingTesting exception handling

• Impractical to treat exceptions like normal flow• Impractical to treat exceptions like normal flow
• too many flows: every array subscript reference, every

memory allocation, every cast, ... y , y ,
• multiplied by matching them to every handler that could

appear immediately above them on the call stack.
 t ll i ibl• many actually impossible

• So we separate testing exceptions
d i ti (t t t t th • and ignore program error exceptions (test to prevent them,

not to handle them)

• What we do test: Each exception handler and • What we do test: Each exception handler, and
each explicit throw or re-throw of an exception

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 60

SummarySummary

• Several features of object oriented languages • Several features of object-oriented languages
and programs impact testing

from encapsulation and state dependent structure – from encapsulation and state-dependent structure
to generics and exceptions

– but only at unit and subsystem levels– but only at unit and subsystem levels
– and fundamental principles are still applicable

Basic approach is orthogonal• Basic approach is orthogonal
– Techniques for each major issue (e.g., exception

handling generics inheritance) can be applied handling, generics, inheritance, ...) can be applied
incrementally and independently

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 62

