Testing in the Lifecycle

Ajitha Rajan

® School of

informatics

Ajitha Rajan Testing in the Lifecycle (©2015-16

] School of _ ¢
s iInformatics

Recap: Waterfall model of software development

Requirements

Design

Implementation

Testing

Release and maintenance

Ok

Sequential, no feedback — lronically its “author”, Royce, presented it as an
example of a broken model

Ajitha Rajan Testing in the Lifecycle (©2015-16

less detail

more detail

Requirements
Analysis

N\

V-model

is validated by
System | o ______
Design
Object |_____. Unit
Design Testing

N\

School of _ e

()
= Informatics

Acceptance
Testing

/

System
Testing

/

Coding

build system

> <

validate system

Ajitha Rajan

Testing in the Lifecycle

©2015-16

] School of _ ¢
- informatics

V-model Rationale

e T his is a modified version of the waterfall model.

e Tests are created at the point the activity they validate is being carried out.
So, for example, the acceptance test is created when the systems analysis is
carried out.

e Failure to meet the test requires a further iteration beginning with the activity
that has failed the validation.

e V-model is focused on creating tests in a structured manner.

e |t is popular with developers of systems that are highly regulated because it
is well suited to creating evidence that can be used to justify a system to a
regulator.

Ajitha Rajan Testing in the Lifecycle (©2015-16

School of _ e

()
= Informatics

Boehm’s Spiral Model

DETERMINE GOALS EVALUATE ALTERNATIVES
ALTERNATIVES, AND RISKS
ints
CONSTRAINTS Constra\“ 4 Risk analysis,
& Constfd‘mss' Risk analysis,
’8&?\
\"‘-e‘((\ o? an
v ?}*‘ const Risk analysis,
& S 1
W A Y
‘,5\6‘ Al O&fra/ Risk analysis, Proto- Proto- \ Proto-
Budget MNag, type type type
get, Budget, [Budget, Budget, rfyeszts; Prototype , YP€; YPe, YP€,
W Requirements, Conce_pt of @ ,g?’ Detailed
life-cycle plan operation @6@00 6@\ \0-){\ design
6@“.(@ =) b@l“g
e o7 &
Mtg '/‘5’1"0,0,)7 s ¢
8., gy 2, - A
ey {@&‘9&0’) /3, h Gf){ N 3\\?}_ g eme\'\\,s \ed Code
fb/&;{) e a?\dades\g(\
\,et'\"‘e Unittest
System
Implementation Acceptance test
plan test
PLAN DEVELOP AND TEST

Ajitha Rajan

Testing in the Lifecycle

©2015-16

o School of _ o
= iInformatics

Spiral Model Rationale

e The spiral model is focused on controlling project risk and attempting formally
to address project risk throughout the lifecycle.

o V&V activity is spread through the lifecycle with more explicit validation of
the preliminary specification and the early stages of design. The goal here is
to subject the early stages of design to V&V activity.

e At the early stages there may be no code available so we are working with
models of the system and environment and verifying that the model exhibits
the required behaviours.

Ajitha Rajan Testing in the Lifecycle (©2015-16

XP principles

eXtreme Programming advocates
working directly with code almost

all the time.

The 12 principles of XP
summarise the approach.
Development is test-driven.

Tests play a central role in
refactoring activity.

“Agile” development mantra:

Embrace Change.

© NSOk

o School of _ e
= informatics

Test-driven development
The planning game
On-site customer

Pair programming
Continuous integration
Refactoring

Small releases

Simple design

System metaphor

. Collective code ownership
. Coding standards
. 40-hour work week

Ajitha Rajan

Testing in the Lifecycle

©2015-16

® School of
= iInformatics

eXtreme Programming (XP)
/”—_’—T i

ew User Story

w‘ime"ts Project Velocity Bugs
system 'fRe;D /rl_a:m\\ Customer

Arn::hitt::n::t:m'zl]wetanhﬂr Release g5, Tteration |Yersion,. Acceptance approval Small

) . — »
Spike * Planning a N Tests Releases
Uncertain (‘) Confident MNext Iteration

User Stories

Estimates Estimates

Splke Copvaght 2000), Doavan Wells

http://www.extremeprogramming.org/map/project.html

Ajitha Rajan Testing in the Lifecycle (©2015-16

http://www.extremeprogramming.org/map/project.html

Common Software
Development Processes

Waterfall lterative XP

Time —

Scope :

Slide adopted from Beck

Facebook's Process Model

n “Moving Fast with Software Verification”

