
System Acceptance and RegressionSystem, Acceptance, and Regression
Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 1

Learning objectivesLearning objectives

• Distinguish system and acceptance testing• Distinguish system and acceptance testing
– How and why they differ from each other and from

unit and integration testingunit and integration testing

• Understand basic approaches for quantitative
assessment (reliability performance)assessment (reliability, performance, ...)

• Understand interplay of validation and
ifi ti f bilit d ibilitverification for usability and accessibility

– How to continuously monitor usability from early
d i t d lidesign to delivery

• Understand basic regression testing approaches

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 2

– Preventing accidental changes

System Acceptance Regression

Test for Correctness Usefulness Accidental Test for ... Correctness,
completion

Usefulness,
satisfaction

Accidental
changes

Test by ... Development
test group

Test group with
users

Development
test grouptest group users test group

Verification Validation Verification

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 3

22.2

System testing
22.2

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 4

System TestingSystem Testing

• Key characteristics: • Key characteristics:
– Comprehensive (the whole system, the whole spec)

Based on specification of observable behavior– Based on specification of observable behavior
Verification against a requirements specification, not
validation, and not opinions

– Independent of design and implementation

Independence: Avoid repeating software design
errors in system test designerrors in system test design

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 5

Independent V&VIndependent V&V

• One strategy for maximizing independence:• One strategy for maximizing independence:
System (and acceptance) test performed by a
different organizationdifferent organization
– Organizationally isolated from developers (no

pressure to say “ok”)pressure to say ok)
– Sometimes outsourced to another company or

agencyagency
• Especially for critical systems
• Outsourcing for independent judgment, not to save money
• May be additional system test, not replacing internal V&V

– Not all outsourced testing is IV&V
• Not independent if controlled by development organization

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 6

Independence without changing staffIndependence without changing staff

• If the development organization controls • If the development organization controls
system testing ...

Perfect independence may be unattainable but we – Perfect independence may be unattainable, but we
can reduce undue influence

Develop system test cases early• Develop system test cases early
– As part of requirements specification, before major

design decisions have been madedesign decisions have been made
• Agile “test first” and conventional “V model” are both

examples of designing system test cases before designing
the implementation

• An opportunity for “design for test”: Structure system for
critical system testing early in projectcritical system testing early in project

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 7

Incremental System TestingIncremental System Testing

• System tests are often used to measure • System tests are often used to measure
progress

System test suite covers all features and scenarios of – System test suite covers all features and scenarios of
use

– As project progresses the system passes more and – As project progresses, the system passes more and
more system tests

• Assumes a “threaded” incremental build plan: • Assumes a threaded incremental build plan:
Features exposed at top level as they are
developeddeveloped

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 8

Global PropertiesGlobal Properties

• Some system properties are inherently global• Some system properties are inherently global
– Performance, latency, reliability, ...

Early and incremental testing is still necessary but – Early and incremental testing is still necessary, but
provide only estimates

A major focus of system testing• A major focus of system testing
– The only opportunity to verify global properties

against actual system specificationsagainst actual system specifications
– Especially to find unanticipated effects, e.g., an

unexpected performance bottleneckunexpected performance bottleneck

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 9

Context-Dependent PropertiesContext-Dependent Properties

• Beyond system global: Some properties depend • Beyond system-global: Some properties depend
on the system context and use

Example: Performance properties depend on – Example: Performance properties depend on
environment and configuration

– Example: Privacy depends both on system and how it – Example: Privacy depends both on system and how it
is used

• Medical records system must protect against unauthorized y p g
use, and authorization must be provided only as needed

– Example: Security depends on threat profiles
• And threats change!

• Testing is just one part of the approach

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 10

Establishing an Operational EnvelopeEstablishing an Operational Envelope

• When a property (e g performance or real• When a property (e.g., performance or real-
time response) is parameterized by use ...

requests per second size of database – requests per second, size of database, ...

• Extensive stress testing is required
– varying parameters within the envelope, near the

bounds, and beyond

G l A ll d d d l f h h • Goal: A well-understood model of how the
property varies with the parameter
– How sensitive is the property to the parameter?
– Where is the “edge of the envelope”?
– What can we expect when the envelope is exceeded?
(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 11

Stress TestingStress Testing

• Often requires extensive simulation of the • Often requires extensive simulation of the
execution environment

With systematic variation: What happens when we – With systematic variation: What happens when we
push the parameters? What if the number of users
or requests is 10 times more, or 1000 times more?or requests is 10 times more, or 1000 times more?

• Often requires more resources (human and
machine) than typical test casesmachine) than typical test cases
– Separate from regular feature tests

Run less often with more manual control– Run less often, with more manual control
– Diagnose deviations from expectation

• Which may include difficult debugging of latent faults! • Which may include difficult debugging of latent faults!

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 12

2

Capacity Testing

• When: systems that are intended to cope with high volumes of data should
have their limits tested and we should consider how they fail when capacity is
exceeded

• What/How: usually we will construct a harness that is capable of generating
a very large volume of simulated data that will test the capacity of the system
or use existing records

• Why: we are concerned to ensure that the system is fit for purpose say
ensuring that a medical records system can cope with records for all people in
the UK (for example)

• Strengths: provides some confidence the system is capable of handling high
capacity

• Weaknesses: simulated data can be unrepresentative; can be difficult to
create representative tests; can take a long time to run

Stuart Anderson System Testing c©2011-14

5

Security Testing

• When: most systems that are open to the outside world and have a function
that should not be disrupted require some kind of security test. Usually we are
concerned to thwart malicious users.

• What/How: there are a range of approaches. One is to use league tables of
bugs/errors to check and review the code (e.g. SANS top twenty-five security-
related programming errors). We might also form a team that attempts to
break/break into the system.

• Why: some systems are essential and need to keep running, e.g. the telephone
system, some systems need to be secure to maintain reputation.

• Strengths: this is the best approach we have most of the effort should go
into design and the use of known secure components.

• Weaknesses: we only cover known ways in using checklists and we do not
take account of novelty using a team to try to break does introduce this.

Stuart Anderson System Testing c©2011-14

6

Performance Testing

• When: many systems are required to meet performance targets laid down in
a service level agreement (e.g. does your ISP give you 2Mb/s download?).

• What/How: there are two approaches - modelling/simulation, and direct test
in a simulated environment (or in the real environment).

• Why: often a company charges for a particular level of service - this may
be disputed if the company fails to deliver. E.g. the VISA payments
system guarantees 5s authorisation time delivers faster and has low variance.
Customers would be unhappy with less.

• Strengths: can provide good evidence of the performance of the system,
modelling can identify bottlenecks and problems.

• Weaknesses: issues with how representative tests are.

Stuart Anderson System Testing c©2011-14

8

Compliance Testing

• When: we are selling into a regulated market and to sell we need to show
compliance. E.g. if we have a C compiler we should be able to show it correctly
compiles ANSI C.

• What/How: often there will be standardised test sets that constitute good
coverage of the behaviour of the system (e.g. a set of C programs, and the
results of running them).

• Why: we can identify the problem areas and create tests to check that set of
conditions.

• Strengths: regulation shares the cost of tests across many organisations so
we can develop a very capable test set.

• Weaknesses: there is a tendency for software producers to orient towards the
compliance test set and do much worse on things outside the compliance test
set.

Stuart Anderson System Testing c©2011-14

10

Documentation Testing

• When: most systems that have documentation should have it tested and
should be tested against the real system. Some systems embed test cases in
the documentation and using the doc tests is an essential part of a new release.

• What/How: test set is maintained that verifies the doc set matches the
system behaviour. Could also just get someone to do the tutorial and point
out the errors.

• Why: the user gets really confused if the system does not conform to the
documentation.

• Strengths: ensures consistency.

• Weaknesses: not particularly good on checking consistency of narrative rather
than examples.

Stuart Anderson System Testing c©2011-14

22.3

Acceptance testing
22.3

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 13

Estimating DependabilityEstimating Dependability

• Measuring quality not searching for faults• Measuring quality, not searching for faults
– Fundamentally different goal than systematic testing

Q tit ti d d bilit l t ti ti l• Quantitative dependability goals are statistical
– Reliability
– Availability
– Mean time to failure
– ...

• Requires valid statistical samples from
operational profile
– Fundamentally different from systematic testing

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 14

Definitions

• Reliability: Survival Probability

• When function is critical during the mission time.

• Availability: The fraction of time a system meets its specification.

• Good when continuous service is important but it can be delayed or
denied

• Failsafe: System fails to a known safe state

• Dependability: Generalisation - System does the right thing at right time

Statistical SamplingStatistical Sampling

• We need a valid operational profile (model)• We need a valid operational profile (model)
– Sometimes from an older version of the system

Sometimes from operational environment (e g for – Sometimes from operational environment (e.g., for
an embedded controller)
Sensitivity testing reveals which parameters are – Sensitivity testing reveals which parameters are
most important, and which can be rough guesses

• And a clear precise definition of what is being • And a clear, precise definition of what is being
measured

Failure rate? Per session per hour per operation?– Failure rate? Per session, per hour, per operation?

• And many, many random samples
– Especially for high reliability measures
(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 15

System Reliability

• The reliability, of a system is the probability that no fault of the class F
occurs (i.e. system survives) during time t.

where tinit is time of introduction of the system to service,
tf is time of occurrence of the first failure f drawn from F.

• Failure Probability, is complementary to

• We can take off the F subscript from and

• When the lifetime of a system is exponentially distributed, the reliability of the
system is: where the parameter is called the failure rate

RF (t) = P (tinit ≤ t < tf∀f ∈ F)

RF (t)QF (t)
RF (t) + QF (t) = 1

RF (t) QF (t)

R(t) = e−λt λ

RF (t)

Component Reliability Model

During useful life, components exhibit a constant failure rate λ.
Reliability of a device can be modelled using an exponential
distributionR(t) = e−λt

Burn In Wear OutUseful Life

Component Failure Rate

• Failure rates often expressed in failures / million operating hours

Automotive Embedded System Component Failure Rate λ

Military Microprocessor 0.022

Typical Automotive Microprocessor 0.12

Electric Motor Lead/Acid battery 16.9

Oil Pump 37.3

Automotive Wiring Harness (luxury) 775

MTTF: Mean Time To Failure

• MTTF: Mean Time to Failure or Expected Life

• MTTF: Mean Time To (first) Failure is defined as the expected value of tf

where λ is the failure rate.

• MTTF of a system is the expected time of the first failure in a sample of
identical initially perfect systems.

• MTTR: Mean Time To Repair is defined as the expected time for repair.

• MTBF: Mean Time Between Failure

MTTF = E(tf) =
� ∞

0
R(t)dt =

1
λ

Serial System Reliability

• Serially Connected Components

• is the reliability of a single component k:

• Assuming the failure rates of components are statistically independent.

• The overall system reliability

• No redundancy: Overall system reliability depends on the proper working of
each component

• Serial failure rate

Rk(t) Rk(t) = e−λkt

Rser(t)
Rser(t) = R1(t)×R2(t)×R3(t)× . . .×Rn(t)

Rser(t) =
n�

i=1

Ri(t)

Rser(t) = e−t(
Pn

i=1 λi)

λser =
n�

i=1

λi

System Reliability

• Building a reliable serial system is extraordinarily difficult and expensive.

• For example: if one is to build a serial system with 100 components each of
which had a reliability of 0.999, the overall system reliability would be

• Reliability of System of Components

• Minimal Path Set:
Minimal set of components whose functioning ensures the functioning of the
system: {1,3,4} {2,3,4} {1,5} {2,5}

0.999100 = 0.905

©G.Khan COE718: HW/SW Codesign of Embedded Systems 11

System Reliability
Building a reliable serial system is extraordinarily
difficult and expensive.
 For example: if one is to build a serial system with 100

components each of which had a reliability of 0.999, the
overall system reliability would be (0.999)100 = 0.905

Reliability of System
of Components

Minimal Path Set:

Minimal set of components whose functioning
ensures the functioning of the system
{1,3,4} {2,3,4} {1,5} {2,5}

Parallel System Reliability

• Parallel Connected Components

• is :

• Assuming the failure rates of components are statistically independent.

• Overall system reliability:

Qk(t) 1−Rk(t) Qk(t) = 1− e−λkt

Qpar(t) =
n�

i=1

Qi(t)

Rpar(t) = 1−
n�

i=1

(1−Ri(t))

Example

• Consider 4 identical modules are connected in parallel

• System will operate correctly provided at least one module is operational. If
the reliability of each module is 0.95.

• The overall system reliability is 1− (1− 0.95)4 = 0.99999375

Parallel-Serial Reliability

• Parallel and Serial Connected Components

• Total reliability is the reliability of the first half, in serial with the second half.

• Given R1=0.9, R2=0.9, R3=0.99, R4=0.99, R5=0.87

•

©G.Khan COE718: HW/SW Codesign of Embedded Systems 13

Parallel-Serial Reliability
Parallel and Serial Connected Components

Total reliability is the reliability of the first half, in
serial with the second half.

Given R1=0.9, R2=0.9, R3=0.99, R4=0.99, R5=0.87

 Rt = [1-(1-0.9)(1-0.9)][1-(1-0.87)(1-(0.99*0.99))]
 = 0.987

Rt = (1− (1− 0.9)(1− 0.9))(1− (1− 0.87)(1− (0.99× 0.99))) = 0.987

Is Statistical Testing Worthwhile?Is Statistical Testing Worthwhile?

• Necessary for • Necessary for ...
– Critical systems (safety critical, infrastructure, ...)

• But difficult or impossible when ...
– Operational profile is unavailable or just a guess

• Often for new functionality involving human interaction
– But we may factor critical functions from overall use to

obtain a good model of only the critical properties

– Reliability requirement is very high– Reliability requirement is very high
• Required sample size (number of test cases) might require

years of test execution
• Ultra-reliability can seldom be demonstrated by testing

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 16

Process-based MeasuresProcess-based Measures

• Less rigorous than statistical testing• Less rigorous than statistical testing
– Based on similarity with prior projects

S t t ti • System testing process
– Expected history of bugs found and resolved

• Alpha, beta testing
– Alpha testing: Real users, controlled environment
– Beta testing: Real users, real (uncontrolled)

environment
– May statistically sample users rather than uses
– Expected history of bug reports

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 17

4

Usability Testing
• When: where the system has a significant user interface and it is important to

avoid user error — e.g. this could be a critical application e.g. cockpit design
in an aircraft or a consumer product that we want to be an enjoyable system
to use or we might be considering efficiency (e.g. call-centre software).

• What/How: we could construct a simulator in the case of embedded systems
or we could just have many users try the system in a controlled environment.
We need to structure the test with clear objectives (e.g. to reduce decision
time,...) and have good means of collecting and analysing data.

• Why: there may be safety issues, we may want to produce something more
useable than competitors’ products...

• Strengths: in well-defined contexts this can provide very good feedback –
often underpinned by some theory e.g. estimates of cognitive load.

• Weaknesses: some usability requirements are hard to express and to test, it
is possible to test extensively and then not know what to do with the data.

Stuart Anderson System Testing c©2011-14

7

Reliability Testing

• When: we may want to guarantee some system will only fail very infrequently
(e.g. nuclear power control software we might claim no more than one
failure in 10,000 hours of operation). This is particularly important in
telecommunications.

• What/How: we need to create a representative test set and gather enough
information to support a statistical claim (system structured modelling supports
demonstrating how overall failure rate relates to component failure rate).

• Why: we often need to make guarantees about reliability in order to satisfy
a regulator or we might know that the market leader has a certain reliability
that the market expects.

• Strengths: if the test data is representative this can make accurate predictions.
• Weaknesses: we need a lot of data for high-reliability systems, it is easy to

be optimistic.

Stuart Anderson System Testing c©2011-14

9

Availability/Reparability Testing

• When: we are interested in avoiding long down times we are interested in how
often failure occurs and how long it takes to get going again. Usually this is
in the context of a service supplier and this is a Key Performance Indicator.

• What/How: similar to reliability testing – but here we might seed errors or
cause component failures and see how long they take to fix or how soon the
system can return once a component is repaired.

• Why: in providing a critical service we may not want long interruptions (e.g.
999 service).

• Strengths: similar to reliability.

• Weaknesses: similar to reliability – in the field it may be much faster to fix
common problems because of learning.

Stuart Anderson System Testing c©2011-14

12

Summary

• There are a very wide range of potential tests that should be applied to a
system.

• Not all systems require all tests.

• Managing the test sets and when they should be applied is a very complex
task.

• The quality of test sets is critical to the quality of a running implementation.

Stuart Anderson System Testing c©2011-14

