Model based testing

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 1

[Functional Specifications)

Identify
Independently
Testable
Features

Y
[Independently Testable Feature

Finite State Machine

N

Grammar
o \ Algebraic Specification
\60&\((\@\\\‘ > OG’/L | ogic Specification
)] trol/Data Flow Graph
Q&Q q,‘)\\3 O's/\
Brute [Representative Values j [Model) j
Force
Testing
G‘@/} C
Q. X7
) > &
%00,,'?)é \e«ee’;\\o(\
Semantic Constraints ‘ /oc?%&"oe e‘fbec)\(\\o " Test Selection Criteri
Combinatorial Selection s Se R \ | @stwelection Lriteria

Exaustive Enumeration \/

Random Selection ‘
[Test Case Specifications)

> Manual Mapping
Symbolic Execution
‘ A-posteriori Satisfaction

Generate
Test Cases

-

. Test Cases

Instantiate
Tests

SOFTWARE TESTING
it L

<_

Scaffolding

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 3

Mauro Pezzé
Michal Young

\A/llhn nAdnl haend + nn)
VVly ||U|UDU |U

e Models used In specification or design have

structure

e Useful information for selecting representative classes of
behavior; behaviors that are treated differently with
respect to the model should be tried by a thorough test

suite
e In combinatorial testing, it is difficult to capture that
structure clearly and correctly in constraints

a \ A ~nan Aoviien tnct ~racne +a ~rhoanl, At il
¥ VVC Lall UCVIOoT LCol LAdoTo LU UIICUA aviluadl
behavior against behavior specified by the

model
e “Coverage” similar to structural testing, but applied to
specification and design models

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 4

Deriving test cases from finite state
machines

A common kind of model for
describing behavior that depends on
sequences of events or stimuli

Example: UML state diagrams

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 5

From an informal specification...

Maintenance: The Maintenance function records the history of items undergoing
maintenance.

If the product i db ! . : . :
requ%sptreod Efth'ér“’yv ‘22? Multiple choices in the first step

by bringing the item to a designated maintenan
If the maintenance is requested by phone or we

or

resident, the item is picked up at the customer site, otherwise, the customer shall ship the

item with an express courier. |

If the maintenance contract num
the procedure for items not covered by warra

If the product is not covered by warranty or m
requested only by bringt he item to a maint
informs the customer of the

.. determine the possibilities
for the next step ...

lows

D
b

costs for repair. Malntenance starts only when the

customer accepts the estimate.
If the customer does not accept the estimate;

Small problems can be repaired directly at the
station cannot solve the problem, the product

headquarters (if in US or EU) or to the maintenance main headquarters (otherwise).

If the maintenance regional headquarters cannot solve the problem, the product is sent to

the maintenance main headquarters.
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

NO
Maintenance

% ¢ e
c return - -
o ° e t
) 5 (Con 8,0 Oa e
\0\e“a a‘(a(\\\J S o __ (O/)[,. S(/ , rW@ B I n I
2\ W ST Q Qs SO
(O 530 <y,
. 8g2o Y,
584 K State
Wait for Maintenance o 8 g < Wait for
returning (no warranty) % g S § .
pust o =
h, T35 mach
) 000019/~ %3\8/ C Ine---
Q0 = 5, D €5
% = (L)
% E® (% o W
2%

Wait for
acceptance

(maintenance
station)

Repaired

7, &
% f)%/
%R
& ©
/4
component . % g
arrives (a) %6‘94 o>
&
K
<
Wait for N
lack component (b) (regional &
component &
headquarters) $
2

component
arrives (b)

unable to repair

01 a|qeun

: o,
(not US or EU resident) %o
SOFTWARE TESTING component OG/){
AND ANALYSIS . (c
ket arrives (c)

Repair
(main
headquarters)

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 7

Meaning: From state O to state
0 2 to state 4 to state 1 to state O

Is this a thorough test suite?
How can we judge?

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 8

1Ta
(%

ove |g
e State coverage:
- Every state in the model should be visited by at least
one test case
e Transition coverage

- Every transition between states should be traversed
by at least one test case.

- This 1s the most commonly used criterion

e A transition can be thought of as a (precondition,
postcondition) pair

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 10

+h Nnoeifing ritArin”
L L 11LCT I .

Q)

e Basic assumption: States fully summarize history
e No distinction based on how we reached a state; this should be
true of well-designed state machine models
e |f the assumption is violated, we may distinguish paths
and devise criteria to cover them
- Single state path coverage:
e traverse each subpath that reaches each state at most once
- Single transition path coverage:

o each transition at most once

- Boundary interior loop coverage:

e each distinct loop of the state machine must be exercised the
minimum, an intermediate, and the maximum or a large number
of times

e Of the path sensitive criteria, only boundary-interior is common

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 11

Testing decision structures

Some specifications are structured as
decision tables, decision trees, or flow
charts. We can exercise these as if
they were program source code.

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 12

.to a decision table ...

edu Individual
EduAc |T |T |F |F |F |F |F |F
BusAc |- - F |F |F |F |F |F
CP>CT1 |- - F |F |T |T |- -
YP>YT1 |- - - - - - - -
CP>CT2 |- - - - F |F |T |T
YP>YT2 |- - - - - - - -
SP<Sc |F |T |F |T |- - - -
SP<T1 |- - - - F |T |- -
P<T2 |- - - - - - F |T

Fut Edu |SP |ND |SP |T1 |SP |T2 |SP

(c) 2007 Mauro Pezze & Michal Young

Ch 14, slide 14

Evamnla NMC/D Generate C.1a and
CAaAlllpIT Viu/ U 7
C.1b by flipping one
C.1 |C.1a C_]_Qﬁ/ element of C.1
—_)
EduAc T F T -
BusAc - - - T N\
C.1b can be merged
CP>CT1 |- _ _ F with an existing
YP>YT1 |- : : F column (C.10) in the
CP>CT2 |- |- . - SPec P
YP>YT2 |- - - - ~
SP > Sc F F T T Outcome of
SP>T1 - - - - generated columns
must differ from
SP > T2 - - - > source column
‘ out Edu |* * %ﬁ‘\l J

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 17

D

Cirirm \l Thn i~ Nnirntiir
OUll | | y 11ICT U Plbl.u

e Models are useful abstractions

- In specification and design, they help us think and
communicate about complex artifacts by
emphasizing key features and suppressing details

- Models convey structure and help us focus on one
thing at a time

e We can use them in systematic testing

- |If a model divides behavior into classes, we probably
want to exercise each of those classes!

- Common model-based testing techniques are based
on state machines, decision structures, and

grammars
e e but we can apply the same approach to other models

(c) 2007 Mauro Pezze & Michal Young Ch 14, slide 34

Testing Object Oriented Software

Chapter 15

15.2

NhaAa
VI

)

Aarntarvictinre nf NN CAfhniarn
AULLCI I10oLlLIVO VI UU VuliilvvQAl ©

Typical OO software characteristics that impact
testing

e State dependent behavior

e Encapsulation

e Inheritance

e Polymorphism and dynamic binding

e Abstract and generic classes

e Exception handling

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 3

i\ li ir\n ~ N
Fiv it A NN AN/
LIVILICO Allu UU JVVYV
Actual Needs and [
Constraints User Acceptance (alpha, beta test) gzlévkearge:
\ |
/ q;)ir\
3 System System Test System
& |Specifications _ Integration
Analysis /
I Review [
YA Subsystem Integration Test Subsystem
Design/Specs
< Analysis /
W Review
Unit/ Unit/
Component < Module Test Components
Specs

< <

User review of external behavior as it is
SOFTWARE TESTING . .
D ANALYSS determined or becomes visible

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 4

OO definitions of unit and integration
testing

e Procedural software
- unit = single program, function, or procedure
more often: a unit of work that may correspond to one or more intertwined
functions or programs
e Object oriented software

- unit = class or (small) cluster of strongly related classes
(e.g., sets of Java classes that correspond to exceptions)

- unit testing = intra-class testing
- Integration testing = inter-class testing (cluster of classes)

- dealing with single methods separately is usually too expensive (complex
scaffolding), so methods are usually tested in the context of the class they
belong to

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 5

15.3

Orthogonal approach: Stages

...

Intra_-ClasS Super/subclass relations Functiunalé
Testing State machine testing I

Augmented state machine Structural

Data flow model
Exceptions

Polymorphic binding

...

Inter-Class ;| Hierarchy of clusters Functional

Testin .
. . Functional cluster testing

. Data flow model Structural
Exceptions
. Polymorphic binding

SOFTWARE TESTING
8 Rt

System and Acceptance Testing (unchanged)

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 6

15.4/5

Ilntr
i11Ll

aclass
e Basic idea:
- The state of an object is modified by operations
- Methods can be modeled as state transitions
- Test cases are sequences of method calls that
traverse the state machine model
e State machine model can be derived from
specification (functional testing), code
(structural testing), or both

SOFTWARE TESTING

[Later: Inheritance and dynamic binding]

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 7

In‘FnrmnI

ctata_firill ecnacifira
Hvlitial otatc=iull opyccu Iba

Slot: represents a slot of a computer model.

. slots can be bound or unbound. Bound slots are
assigned a compatible component, unbound slots are
empty. Class slot offers the following services:

e |nstall: slots can be installed on a model as required or
optional.

e Bind: slots can be bound to a compatible component.

e Unbind: bound slots can be unbound by removing the
bound component.

e |sBound: returns the current binding, if bound;
e otherwise returns the special value empty.

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 8

e From the informal specification we can identify
three states:
- Not_installed
- Unbound
- Bound

e and four transitions
- Install: from Not_installed to Unbound
- bind: from Unbound to Bound
- unbind: ...to Unbound
- IsBound: does not change state

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 9

NA \l N AN LCN AanAd +Aact ~Aracnce
L/CTIIVII U All | VIVI AllIuU LTol LAoCo
|sBound
incorporate
unBind
iIsBound
bind
unBlnd

e TC-1: Incorporate, isBound, bind, isBound
e TC-2: Incorporate, unBind, bind, unBind, isBound

SOFTWARE TESTING
AND ANALYSS

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 10

T N A
1 T |U VV ||

T
2
~+

e A statechart (called a “state diagram” in UML)
may be produced as part of a specification or
design

e May also be implied by a set of message sequence charts
(interaction diagrams), or other modeling formalisms

e Two options:

- Convert (“flatten”) into standard finite-state
machine, then derive test cases

- Use state diagram model directly

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 11

15.6

T~ N

It oo
| L Aoo 1C |U

rrla
11 1 Ul

fa
CIlLu

e The first level of integration testing for object-
oriented software

- Focus on interactions between classes

e Bottom-up integration according to “depends”
relation

- A depends on B: Build and test B, then A
e Start from use/include hierarchy

- Implementation-level parallel to logical “depends” relation
e Class A makes method calls on class B

e Class A objects include references to class B methods
s ST - but only if reference means “is part of”

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 15

fro
d

Account Customer Order Package
1 0..* 1 * 1 *
/\
* 1
| | * *
USAccount OtherAccount
CustomerCare Lineltem
JPAccount EUAccount UKAccount
Compositeltem Simpleltem
* *
*
I Model PriceList Component
* 1 _l* 0x1
Mﬂlulll--- Slot
*
1 1 1
ModelDB SlotDB ComponentDB

Y747Y7

CSvdb

h

>

+ N Vol ol e
axa LU QA 11ITI AI UL |
Customer Order Package
USAccount OtherAccount
CustomerCare PriceList Component
Model
JPAccount EUAccount UKAccount
ComponentDB
l
Slot
Note: we may have ModelDE SiotDB
to break loops and

SOFTWARE TESTING g e n e rate Stu bS

AND ANALYSIS

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 17

Nt
L

i v +
il | L

nrarntinne in Intarnrlace TAacte
CIAQULIVIIO 111 1T1ILTIUIAOODO 1 Tolo

e Proceed bottom-up

e Consider all combinations of interactions

- example: a test case for class Order includes a call to
a method of class Model, and the called method calls
a method of class Slot, exercise all possible relevant
states of the different classes

- problem: combinatorial explosion of cases

- so select a subset of interactions:
e arbitrary or random selection

e plus all significant interaction scenarios that have been
previously identified in design and analysis: sequence +
collaboration diagrams

it L

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 18

seguence diagram

ChiComp:ComponentDB

ChiSlot:SlotDB

C20slot:Slots

:Compoment

C20Com

ChiMod:ModelDB

C20:Model

found

|
|
|
|
|
|
|
|
|
|
|
|
extract(C20)

select()

getmodel(C20)

4

O:Order

selectModel()
addCompoment(HD60) |

found

addCompoment(HD20)

success

15.7

'I-v'l +||v'r\| i
JLULIEULLUI 1 11

~FA
Uulad 1V

rm

Antinn
I11ICAL

1N
I VI

SiNg S

e Start with functional testing

- As for procedural software, the specification (formal
or informal) Is the first source of information for
testing object-oriented software

e “Specification” widely construed: Anything from a
requirements document to a design model or detailed
Interface description

e Then add information from the code (structural
testing)

- Design and implementation details not available
from other sources

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 20

From the implementation ...

public class Model extends Orders.Compositeltem {

private instance

private boolean legalConfig = false; // memoized _
variable

public boolean isLegalConfiguration() {
if (! legalConfig) {
checkConfiguration();

}

return legalConfig;

private void checkConfiguration() { <private method

legalConfig = true;
for (int i=0; 1 < slots.length; ++1) {

Slot slot = slots[i];

If (slot.required && ! slot.isBound()) {
s |@galConfig = false;

it L

JY)

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 21

1+ | AAata flA
intraciass gata riow t

cE:

)
I A

e Exercise sequences of methods
- From setting or modifying a field value
- To using that field value

e \WWe need a control flow graph that encompasses
more than a single method ...

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 22

Thoa

Nntranla
11I1C (| |

It AauilA

Control flow for each method
+

(modelDB.getMode rmodeiily, thi

exit selectlicdel

Method

node for class
addComponent

+ | -

edges (X n ot ED

from node class to the start T o (s
nodes of the methods (" Component comp = new Componentorder,sku) e -

from the end nodes of the (eomconts - e

methods to node class \Me;tth

=> control flow through sequences
Of methOd CaIIS < legalConfig = false;

exit addCompoment

@oolean isLegalConfiguration() 71

True if (lisLegalConfig) (7.2)
alse

checkCongfiguration()
SOFTWARE TESTING

Bl class Model

: i ! i 6.7
|
(c) 2008 Mauro Pezze & Michal Young Ch 15/=sfide

lntnrnlace ctriintiival + Ny
IHILTI LVIAdoo oLl UL LUl Al IU

e Working “bottom up” in dependence hierarchy

e Dependence is not the same as class hierarchy; not always
the same as call or inclusion relation.

e May match bottom-up build order

- Starting from leaf classes, then classes that use leaf
classes,

e Summarize effect of each method: Changing or
using object state, or both

- Treating a whole object as a variable (not just
SOFTWARE TESTING primitive types)

it L

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 24

15.9

Polymorphism and dynamic binding

One variable potentially bound to
methods of different (sub-)classes

“Isolated” calls: the combinatorial
explosion problem

abstract class Credit {

abstract boolean validateCredit(Account a, int amt, CreditCard c);

}
EduCredit USAccount VISACard
BizCredit UKAccount AmExpCard
IndividualCredit EUAccount StoreCard
JPAccount
OtherAccount

The combinatorial problem: 3 x 5 x 3 = 45 possible combinations
of dynamic bindings (just for this one method!)

SOFTWARE TESTING
AND ANALYSIS

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 39

ThAa A~
111 LUV

ldentify a set of
combinations that
cover all pairwise
combinations of
dynamic bindings

Same motivation as
pairwise specification-
based testing

mhinatAar

1111

IALUI

I "NMNr

al appro

_T

Account
USAccount
USAccount
USAccount
UKAccount
UKAccount
UKAccount
EUAccount
EUAccount
EUAccount
JPAccount
JPAccount
JPAccount
OtherAccount
OtherAccount
OtherAccount

Credit
EduCredit
BizCredit
individualCredit
EduCredit
BizCredit
individualCredit
EduCredit
BizCredit
individualCredit
EduCredit
BizCredit
individualCredit
EduCredit
BizCredit
individualCredit

creditCard

VISACard
AmExpCard
ChipmunkCard
AmExpCard
VISACard
ChipmunkCard
ChipmunkCard
AmExpCard
VISACard
VISACard
ChipmunkCard
AmExpCard
ChipmunkCard
VISACard
AmExpCard

Ch 15, slide 40

15.10

InhAaritan
I111ICTIIL

e \WWhen testing a subclass ...

- We would like to re-test only what has not been
thoroughly tested in the parent class

e for example, no need to test hashCode and getClass
methods inherited from class Object in Java

- But we should test any method whose behavior may
have changed
e even accidentally!

SOFTWARE TESTING
it L

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 44

Reusing Tests
with the Testing History Approach

e Track test suites and test executions
- determine which new tests are needed
- determine which old tests must be re-executed

e New and changed behavior ...
- new methods must be tested

- redefined methods must be tested, but we can
partially reuse test suites defined for the ancestor

- other inherited methods do not have to be retested

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 45

1N
1

T t
[L

Q
n

faY e,
Co

Parent

int X;
public foo(...) {.... }d
publicbar(...){.... }

Child

public extra(...) {.... }O
public bar(...) {.... }

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 46

Child
public extra(...) { }
ublic bar(...) {.... }

Inherited, unchanged ("recursive"):
No need to re-test

SOFTWARE TESTING
it L

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 47

|\| \Al \ 7/

vvy

Parent

int x;
public foo(...
ublic bar(...

{ ...

ublic bar(... {

New:
Design and execute new test cases

SOFTWARE TESTING
AND ANALYSIS

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 48

SOFTWARE TESTING
it L

WhWinrriddan maonathnade
UVCIITIUUCII 1TITLIIUUO
Parent
int x;
public foo(...) {.... }
publicbar(..){. YT :'
Child s ,Iffq'stgsuile
public extra(...){....} f-——---------- ' g w
Jpublicbarl . Y{.. VL el
Overridden:

Re-execute test cases from parent,

add new test cases as needed

(c) 2008 Mauro Pezze & Michal Young

Ch 15, slide 49

T A e \l

cnmnon Antalle
|1 C IU I y SDUIIIT UICLAll

)
allo

e Abstract methods (and classes)

- Design test cases when abstract method is
Introduced (even if it can’t be executed yet)

e Behavior changes

- Should we consider a method “redefined” if another
new or redefined method changes its behavior?

e |t mlght be reasonable combination of data flow (structural)
OO0 testing with the (functional) testing history approach

SOFTWARE TESTING
AND ANALYSIS

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 50

Inherited

Overridden

New

SOFTWARE TESTING
AND ANALYSS

int x;

public foof ...) { }O
public bar(...) {.... }

| Child

I_puuiiﬂ. extra(...) {.... }Jd

public bar(...){.... }

nctina LlictArvy Ciimmrmars
CDLIIIU I TIOLUI = JuUlliiiial
Inherited !
Parent Test suite

-------------- 2 T

(c) 2008 Mauro Pezze & Michal Young

Ch 15, slide 51

Nnoc tnectina hictAarnv, haln9
UCO LCDLIIIU IIIDLUIy IICIlJ.’
e Executing test cases should (usually) be cheap

- It may be simpler to re-execute the full test suite of
the parent class

- ... but still add to it for the same reasons

e But sometimes execution is not cheap ...
- Example: Control of physical devices

- Or very large test suites

e Ex: Some Microsoft product test suites require more than
one night (so daily build cannot be fully tested)

- Then some use of testing history is profitable

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 52

15.12

Cveantinn handlins
I_l\bCIJLIUII IIaIIUIIIIU
void addCustomer(Customer theCust) { exceptions
customers.add(theCust); create implicit
+ control flows
public static Account and may be
newAccount(...) handled by
throws InvalidRegionException different
{
Account thisAccount = null; handlers

String regionAbbrev = Regions.regionOfCountry(
mail lAddress.getCountry());
iIT (regionAbbrev == Regions.US) {
thisAccount = new USAccount();
} else 1Tt (regionAbbrev == Regions.UK) {
} else 1T (regionAbbrev == Regions.Invalid) {

throw new
Inval idRegionException(mai lAddress.getCountry());

SOFTWARE TEST
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 59

N nntinn handlinm~
I IU IJI.IUII 111 1UT IU

e Impractical to treat exceptions like normal flow

e too many flows: every array subscript reference, every
memory allocation, every cast, ...

e multiplied by matching them to every handler that could
appear immediately above them on the call stack.

e many actually impossible

e SO we separate testing exceptions

e and ignore program error exceptions (test to prevent them,
not to handle them)

e What we do test: Each exception handler, and
each explicit throw or re-throw of an exception

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 60

Ciim \l
OUIIII 1y

e Several features of object-oriented languages
and programs impact testing

- from encapsulation and state-dependent structure
to generics and exceptions

- but only at unit and subsystem levels
- and fundamental principles are still applicable

e Basic approach is orthogonal

- Techniques for each major issue (e.g., exception
handling, generics, inheritance, ...) can be applied
Incrementally and independently

SOFTWARE TESTING
8 Rt

(c) 2008 Mauro Pezze & Michal Young Ch 15, slide 62

