Dependence and Data Flow Models

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 1

\V\Viat V! 'I' Iﬁ\l\l

NMAndale
VVIy ala I'I1UvVV IVIUUCIO

e Models from Chapter 5 emphasized control
e Control flow graph, call graph, finite state machines

 We also need to reason about dependence

e Where does this value of x come from?
« What would be affected by changing this?

e Many program analyses and test design
techniques use data flow information

- Often in combination with control flow

o Example: “Taint” analysis to prevent SQL injection attacks
« Example: Dataflow test criteria (Ch.13)

it L

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 2

q

| N Ihinn 'I-\l
LT QA | |U J (02 §

faY e,
VCO

e Understand basics of data-flow models and the
related concepts (def-use pairs, dominators...)

e Understand some analyses that can be
verformed with the data-flow model of a
Drogram

- The data flow analyses to build models

- Analyses that use the data flow models

e Understand basic trade-offs in modeling data
flow

- variations and limitations of data-flow models and
analyses, differing in precision and cost

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 3

re (1)
D\}

A def-use (du) pair associates a point in a program
where a value is produced with a point where it is used

e Definition: where a variable gets a value
- Variable declaration (often the special value “uninitialized”)
- Variable initialization
- Assignment
- Values received by a parameter

e Use: extraction of a value from a variable
- Expressions
- Conditional statements
- Parameter passing
wens — REETUNS

AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 4

Def-Use Pairs

[]
if () { [if () { } Definition:
X=.., X gets a
_ - \‘/\/I value
} X =...
y=..+tXxX+ : (: b
N / J | Use: the value

L of xis
D%fa:\ise f%/ extracted
yEotxE

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 5

D

c‘D

f-Use Pairs (

—{ public int gcd li
/** Euclid's algorithm */ S)
public class GCD T 5 —
{ h use =
public int gcd(int x, inty) { w— l &)
int tmp; /1 A: def x, y, tmp J g T
while (y!=0){ //B: usey D
tmp=x%y; //C:deftmp;usex,y) |]
X=Y, // D: def x; use y =y _ ©)
y = tmp; /1 E: def y; use tmp l e oo
b o - ®
return x; /] F: use x L prem
use = {y}
} \
/y=tmp: ®
b def = fy}
use = {imp}
o /
\4.{ refurn x; @
WD ANALISES . S def = §
F o Figure 6.2, page 79 use = {4

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 6

o A definition-clear path is a path along the CFG
from a definition to a use of the same variable
without® another definition of the variable
between

- If, instead, another definition is present on the
path, then the latter definition kills the former

- N :A Ao

e A def-use |Jd|l is formed if and onl 18" if there is a

definition-clear path between the definition
and the use

SOFTWARE TESTING *There is an Over-SimpIiﬁcaﬂon

it L

here, which we will repair later.

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 7

NAafinitinn lnar Anr Willinm
L/CTIITILIVILI iICTAl Ul l il Iy
X=... [/ A:defx .)
q = . ags
: ' Definition: x
x=y; // B:Kkill x, def x 4 Y
z=?l.. /@ X = ... % gets a value
y = f(x); [/ Cusex) I .
Definition: x gets
Path A..C is ~ y < a new value, old
not definition-clear< @ X =y ' value is killed
e . l J
Path B..C is .) _
definition-clear A @ : N Use.O:chfi\S/alue
L \\ Y = f(X) y extracted

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 8

NnAdn
ucC

G)
ts

laYaYa avela
IJ I 11ULC
A direct data dependence graph is:

- Nodes: as in the control flow graph (CFG)

- Edges: def-use (du) pairs, labelled with the variable name

‘public int ged(int x, int v} { @a

int tmp;
Il.;l] : ! | I ¥
- X X I N Y————».‘_ ™
2 .Y \ "l Dependence
— I .
 mp=x%y O N i edges show this
|
| ~mp -y’ i | x value could be
 Geme ® | the unchanged
- ' T | parameter or
|
v vy Y . v | could be set at
[while (v 1=0) @g (x=vy (D ‘ line D
T
{ e |
|
Y ¥
SOFTWARE F-Eturn xl/ II:E}
AND VALY (Figure 6.3, page 80) J

h (c) 2007 Mauro Pezze & Michal Young Ch 6, slide 9

Data Flow Analysis

Computing data flow information

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 15

Calriilatinm 'FII("
wAailu

uia |g er-use p

« Definition-use pairs can be defined in terms of paths in the
program control flow graph:
- There is an association (d,u) between a definition of variable v at d
and a use of variable v at u iff
« there is at least one control flow path from d to u
« with no intervening definition of v.
- V4 reaches u (v4 is a reaching definition at u).
- If a control flow path passes through another definition e of the same
variable v, v_kills v4 at that point.
e Even if we consider only loop-free paths, the nhumber of paths in a
graph can be exponentially larger than the number of nodes and
edges.

e Practical algorithms therefore do not search every individual path.
Instead, they summarize the reaching definitions at a node over all

SOFTWARE TESTING

Jessthe paths reaching that node.

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 16

Exponential paths
(even without loops)

2 paths from Ato B

4 from Ato C not efficient, and we

Tracing each path is

can do much better.
8 fromAto D

16 from Ato E

128 paths from Ato V

SOFTWARE TESTING
AND ANALYSS

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 17

Al~narithm
HlUUl iLiiii

NEC
Ll

e An efficient algorithm for computing reaching
definitions (and several other properties) is based on

the way reaching definitions at one node are related to
the reaching definitions at an adjacent node.

e Suppose we are calculating the reaching definitions of
node n, and there is an edge (p,n) from an immediate
predecessor node p.

- If the predecessor node p can assign a value to variable v, then
the definition v, reaches n. We say the definition v, is
generated at p.

- If a definition v, of variable v reaches a predecessor node p,
and if v is not redefined at that node (in which case we say the
v, is killed at that point), then the definition is propagated on
from p to n.

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 18

e ua 'I- Nne nf nnda E — +mMn)
L| aLivl io Ul IIUUC _ \y — LIII|J}
public class GCD {
public int gcd(int x, inty) {
: int tmp; /1 A: def x, y, tmp
Calculate reachin :
definitions at E ing while (y1=0)1 //B: usey
terms of it tmp=x%y; //C:deftmp;usex,y
- mediate — X =Y; // D: def x; use y
oredecessor D = y =tmp; // E: def y; use tmp
— | 3
return x; /1 F: use x
3

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {y,}) W {Ye}

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 19

C ua 'I' ne nf Nnndn D Mhathila v/ 1— NN
Ll Allivlilio Ul I UuUIC \VVIII \ - U}}
public class GCD {
public int gcd(int X, inty) {
This line has two ~_ int tmp; /1 A: def x, y, tmp
predecessors: = while(y!=0){ //B:usey
Before the loop, tmp=x%y; //C:deftmp; usex,y
end of the loop X =Y; /1 D: def x; use y
y = tmp; // E: def y; use tmp
3
return Xx; /] F: use x
3

e Reach(B) = ReachOut(A) U ReachOut(E)
o ReachOut(A) = gen(A) = {X,, Y., tmp,}
..» ReachOut(E) = (Reach(E) \ {y,}) U {Y¢}

it L

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 20

Reach(n) = Y ReachOut(m)
mepred(n)

ReachOut(n) = (Reach(n) \ kill (n)) U gen(n)

gen(n) ={ v, | vis defined or modified at n }
kKill(n) ={ v, | v is defined or modified at x, x=n }

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 21

Arvriail r\m | 'I- Nne
M\VAll q alLiVvl io

Avail (= () AvailOut(m)
mepred(n)
AvailOut(n) = (Avail (n) \ kill (n)) U gen(n)

gen(n) = { exp | exp is computed at n }
Kill(n) = { exp | exp has variables assigned at n }

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 22

Live(n) = U LiveOut(m)

mesucc(n)
LiveOut(n) = (Live(n) \ kill (n)) U gen(n)

gen(n) ={v | visusedatn}
Kill(n) ={ v | v is modified at n }

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 23

'ad 1 Fi 4+ £ [
uiaSSitication 0Oi ana.yses

 Forward/backward: a node’s set depends on that of its
predecessors/successors

e Any-path/all-path: a node’s set contains a value iff it is
coming from any/all of its inputs

Any-path (V) All-paths (M)
Forward (pred) Reach Avall
Backward (succ) Live “inevitable”

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 24

l+Aaratn/a CAliitinn AFfF N
i1 LTI LIVC OUIUL L/

Ta +AaflAvas ml 'l-
1IUI1l Ul LAIIV

— — Nnao
A A VvV L,| AlLIVIl IO
e Initialize values (first estimate of answer)

- For “any path” problems, first guess is “nothing”
(empty set) at each node

- For “all paths” problems, first guess is “everything”
(set of all possible values = union of all “gen” sets)

e Repeat until nothing changes
- Pick some node and recalculate (new estimate)

This will converge on a “fixed point™ solution
where every new calculation produces the
same value as the previous guess.

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 25

Cooking your own. From Execution to
Conservative Flow Analysis

« We can use the same data flow algorithms to
approximate other dynamic properties

- Gen set will be “facts that become true here”
- Kill set will be “facts that are no longer true here”
- Flow equations will describe propagation

« Example: Taintedness (in web form processing)

- “Taint”: a user-supplied value (e.g., from web
form) that has not been validated

- Gen: we get this value from an untrusted source
here

== - Kill: we validated to make sure the value is proper

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 27

MNAat+a Fl | " ith
pata 110w aﬂalySiS WItN arr ym nd p Nters

ala
e Arrays and pointers introduce uncertainty:
Do different expressions access the same
storage?
- a[i] same as a[k] when i = k
- a[i] same as b[i] when a = b (aliasing)
e The uncertainty is accomodated depending to
the kind of analysis

- Any-path: gen sets should include all potential
aliases and kill set should include only what is
definitely modified

s - All-path: vice versa

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 29

CrANnn
JU |J I
e Intraprocedural

- Within a single method or procedure
 as described so far

e Interprocedural
- Across several methods (and classes) or procedures

e Cost/Precision trade-offs for interprocedural
analysis are critical, and difficult

- context sensitivity

- flow-sensitivity

SOFTWARE TESTING
8 Rt

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 30

Crantavt Cancitinvityv
WVUIILTAL OCTIHIOILIVIL
foo(){ bar() {
— | C@ahlsub(){ =~ [(call -
- .) RN L
—— | .. SR Yoo —L
sub() ~- [sub()
€eeden.,, —/ :I:
] NS N - T
(return) L } ~ T (return)
} }

SOFTWARE TESTING
AND ANALYSIS

A context-sensitive (interprocedural) analysis
distinguishes sub() called from foo()

from sub() called from bar();

A context-insensitive (interprocedural) analysis
does not separate them, as if foo() could call sub()
and sub() could then return to bar()

(c) 2007 Mauro Pezze & Michal Young

Ch 6, slide 31

M

w1 CAancot
JCI 101

ClA +
I 1TUVV L

i

AA

« Reach, Avail, etc. were flow-sensitive,
intraprocedural analyses

- They considered ordering and control flow decisions

- Within a single procedure or method, this is (fairly)
cheap — O(n3) for n CFG nodes

e Many interprocedural flow analyses are flow-
insensitive

- O(n3) would not be acceptable for all the statements
in a program!
e Though O(n3) on each individual procedure might be ok

- Often flow-insensitive analysis is good enough ...
e CONSIder type checking as an example

it L

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 32

Ciim \l
OUIIII 1y

Data flow models detect patterns on CFGs:
- Nodes initiating the pattern

- Nodes terminating it

- Nodes that may interrupt it

Often, but not always, about flow of information
(dependence)

Pros:
- Can be implemented by efficient iterative algorithms
- Widely applicable (not just for classic “data flow” properties)

Limitations:
- Unable to distinguish feasible from infeasible paths

- Analyses spanning whole programs (e.g., alias analysis) must
trade off precision against computational cost

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 6, slide 33

