
Data Flow Coverage 2

Stuart Anderson

Stuart Anderson Data Flow Coverage 2 c©2011-14

1

Coverage: the point, revisited

• We are attempting to decide what makes a good test.
i.e judge the adequacy of our test suite.
• Surely an adequate test suite will show our software is correct?

Impossible. Same as proving the software is correct.
• So can we say some test suites are better than others?

Yes, if we can define effective, testable adequacy criteria. Such as?
– Statement coverage = 1

But if our test doesn’t exercise all statements, surely it’s no good?
– Branch coverage = 1

But if our test doesn’t exercise all branches, surely it’s no good?
– Path coverage = 1

But if our test doesn’t exercise all paths, surely it’s no good? (!)
• So they are actually really inadequacy criteria

Stuart Anderson Data Flow Coverage 2 c©2011-14

2

Subsumption

• So really, no tests are as good as we’d want. But some are provably worse
than others, e.g. branch coverage necessarily includes statement coverage.

• Definition: test coverage criterion A subsumes test coverage criterion B if
and only if, for every program P, every test set satisfying A with respect to
P also satisfies B with respect to P.

• If you have branch coverage, you also always have statement coverage —
Branch coverage subsumes statement coverage.

• If criterion A subsumes criterion B, and a test suite satisfying B is guaranteed
to find a fault, then a suite satisfying A will also find that fault.
– But these criteria provide no guarantees.
– And with no guarantee that B will find a fault, we have no guarantee for A

either.

Stuart Anderson Data Flow Coverage 2 c©2011-14

3

Adequacy review 1
• Statement adequacy: all statements have

been executed by at least one test case.

• Branch adequacy: all branches have been
executed by at least one test case.

• Basic condition adequacy: each basic
condition evaluates to true in at least one
test case, and to false in at least one test
case.

• Compound condition adequacy (simplistic
definition): each combination of truth values
of basic conditions must be visited by at least
one test case.

Stuart Anderson Data Flow Coverage 2 c©2011-14

4

Good definitions are important: basic condition

• (X=Y=Z=F); (X=Y=Z=T) appears to achieve B.C.A., but condition Y is
never evaluated in the first case, nor Z in the second.

• Need, e.g. (X=F, Y=?, Z=T); (X=T, Y=Z=F); (X=Y=T, Z=?) (? = don’t
care, because it’s never evaluated).

Stuart Anderson Data Flow Coverage 2 c©2011-14

Exercise 5

Test suite adequacy 1

• T0 = { ” ”, ”test”, ”test+case%1Dadequacy” }
• T1 = { ”adequate+test%0Dexecution
• T2 = { ”%3D”, ”%A”, ”a+b”, ”test” }
• T3 = { ” ”, ”+%0D+%4J” }
• T4 = { ”first+test%9Ktest%K9” }

[P&Y p.213-214, Figures 12.1 & 12.2]

Stuart Anderson Data Flow Coverage 2 c©2011-14

Comments 6

Test suite adequacy 1

• T2 uncovers a bug in the program. What bug?
• Branch coverage appears the same as statement coverage here. Suggest a

code construct which would show branch coverage to be superior to statement
coverage.
• Basic condition coverage clearly doesn’t subsume branch coverage.
• While T4 technically satisfies basic condition coverage, you can argue that it

doesn’t. How?
• You can also argue that compound condition coverage is impossible for this

code fragment, for a similar reason. This might lead us to modify our
definitions of basic and compound condition coverage, to make them more
practical. How?
• Can you suggest enhancements to each test in order to achieve compound

condition coverage?

Stuart Anderson Data Flow Coverage 2 c©2011-14

7

Adequacy review 2

• Test suite T satisfies the path adequacy criterion for program P iff for each
path p of P there exists at least one test case in T that causes the execution
of p.

• Loop boundary adequacy criterion: test cases exist such that each loop is
executed zero times, exactly once, and many times.

Some common sense necessary in application: Some loops have a fixed number
of iterations. How many is ‘many’?

Stuart Anderson Data Flow Coverage 2 c©2011-14

Exercise 8

Test suite adequacy 2
• This routine loops through elements 0 to n-1

of array A (stopping if it finds an element
that’s greater than or equal to X). As it does
so, it replaces any negative entries in A with
their absolute (positive) value.

• Generate a test suite (in the form of some
suggested values for array A, e.g. [1, 2], [3,
4]) which satisfies the path adequacy criterion
for this program. Assume n = |A|.

• Generate a test suite which satisfies the loop
boundary adequacy criterion.

Stuart Anderson Data Flow Coverage 2 c©2011-14

Comments 9

Test suite adequacy 2

• Path adequacy is impossible, even for this trivial example!

• Consider the below code fragment. On the surface there are four paths through
it, but a little attention makes it clear that no test suite could ever exercise
one of those paths:

if(a < 0)

a = 0;

if(a > 10)

a = 10;

• So, realistically, we must settle for less than 100% coverage.

Stuart Anderson Data Flow Coverage 2 c©2011-14

10

Adequacy review 3: data flow basics

• Data flow criteria are concerned with definition-clear paths from definition
to use of individual variables.

• Context is a graph representation of the program, with vertices being basic
blocks.

• A definition-use pair (DU pair) is a pairing of definition and use of a variable,
with at least one def-clear path between them (there could be many).

• dcu(x, v) is the set of vertices v′ which use variable x in computations, and
could be directly affected by a definition of x at v (i.e. there is a def-clear
path from v to v′).

• dpu(x, v) is the set of edges (v′, v′′) which use variable x in their predicates
(conditions/branches), and could be directly affected by a definition of x at v
(i.e. there is a def-clear path from v to v′).

Stuart Anderson Data Flow Coverage 2 c©2011-14

Exercise 11

Data flow basics

• Identify DU pairs for c (your
answer will be a list of pairs of
line numbers).
• Identify DU pairs for
digit high.
• Identify the def-predicate uses

in your answers.
• Identify the def-computation

uses in your answers.
• What is dcu(ok,34)?
• What is dpu(ok,20)?
• What is dpu(digit high, 30)?

-17: int cgi_decode(char *encoded, char *decoded) {
-18: char *eptr = encoded;
-19: char *dptr = decoded;
*20: int ok=0;
*21: while (*eptr) {
-22: char c;
*23: c = *eptr;
-24: /* Case 1: ’+’ maps to blank */
*25: if (c == ’+’) {
*26: *dptr = ’ ’;
*27: } else if (c == ’%’) {
-28: /* Case 2: ’%xx’ is hex for character xx */
-29:
30: int digit_high = Hex_Values[(++eptr)];
31: int digit_low = Hex_Values[(++eptr)];
*32: if (digit_high == -1 || digit_low == -1) {
-33: /* *dptr=’?’; */
34: ok=1; / Bad return code */
-35: } else {
*36: *dptr = 16* digit_high + digit_low;
-37: }
-38:
-39: /* Case 3: All other chars map to themselves */
*40: } else {
*41: *dptr = *eptr;
-42: }
*43: ++dptr;
*44: ++eptr;
-45: }
*46: *dptr = ’\0’; /* Null terminator for string */
*47: return ok;
-48: }

Stuart Anderson Data Flow Coverage 2 c©2011-14

12

Adequacy review 4: data flow criteria

• All-defs requires that test T exercises each definition in program P at least
once. This means not just executing the definition, but using its result in at
least one computation or predicate.

• All-p-uses requires exercise of all DU pairs culminating in predicates. Note
pairs, not paths: only one def-clear path needed per DU pair.

• All-c-uses requires exercise of all DU pairs culminating in computations.
Note pairs, not paths.

• All-p-uses/some-c-uses and all-c-uses/some-p-uses expand the above two
by requiring that all-defs hold as well.

• All-uses requires that both all-p-uses and all-c-uses hold.

• All-du-paths expands on all-uses by requiring that all def-clear paths between
each DU pair are exercised, modulo loops.

Stuart Anderson Data Flow Coverage 2 c©2011-14

Exercise 13

Data flow criteria
• Suggest a set of

path(s) which satisfy
all-defs.

• Suggest a set of
path(s) which satisfy
all-c-uses.

• Suggest a set of
path(s) which satisfy
all-du-paths.

Stuart Anderson Data Flow Coverage 2 c©2011-14

14

All-Defs Coverage Criterion
• We require to use all

definitions.

• Here we assume we only use
the variable x.

• We require to use each def.

• So the path A,B,D,F is OK.

• Suppose we defined a variable
y in C and used it in E what
would be a suitable test set?

Stuart Anderson Data Flow Coverage 2 c©2011-14

15

All-Uses Coverage Criterion
• We need to ensure we exercise

every use.

• So we need the set of test
paths to include:

– A to B
– A to C
– A to E

• So a satisfactory test set is:

– A,B,D,F
– A,C,D,E,F

Stuart Anderson Data Flow Coverage 2 c©2011-14

16

All DU-paths Coverage Criterion
• Here we need to consider all loop-

free paths between A and vertices
that use x.

• So we need to include:
– A,B
– A,C
– A,B,D,E
– A,C,D,E

• So the following test set satisfies
the coverage criterion:
– A,B,D,E,F
– A,C,D,E,F

Stuart Anderson Data Flow Coverage 2 c©2011-14

17

More Complex Data Flow Criteria

• Ntafos proposed a generalisation of the original data-flow criteria to allow
iteration of definition/use chains

• Foundation:

– Chains of alternating definitions and uses linked by definition-clear subpaths
(k-dr interactions)

– ith definition reaches ith use,
– which defines ith+1 definition
– k is number of iterations

Stuart Anderson Data Flow Coverage 2 c©2011-14

18

k-dr Interactions

Stuart Anderson Data Flow Coverage 2 c©2011-14

19

Wrapping up

• So we can argue that certain criteria are less bad than others. Where does this
get us?

• Not terribly far unfortunately: most of the theoretical research seems to indicate
you cannot conclude much about test effectiveness from your adequacy criteria.

• But there is empirical evidence that at very high levels of coverage, stronger
criteria are worth pursuing.

• It does not seem surprising though that writing ten times as many tests in
order to satisfy a stronger criterion gives you better results. The question then
is whether these extra criterion-driven tests are better than extra random ones.

• Research now seems to be heading in this more empirical direction, rather than
focusing on theoretical adequacy comparisons.

Stuart Anderson Data Flow Coverage 2 c©2011-14

20

Readings
Required Readings

• Textbook (Pezzè and Young): Chapter 9, Test Case Selection and Adequacy

Stuart Anderson Data Flow Coverage 2 c©2011-14

