
Fault-Based Testing

Learning objectives

- Understand the basic ideas of fault-based testing
 - How knowledge of a fault model can be used to create useful tests and judge the quality of test cases
 - Understand the rationale of fault-based testing well enough to distinguish between valid and invalid uses
- Understand mutation testing as one application of fault-based testing principles

Let's count marbles ... a lot of marbles

Photo credit: (c) KaCey97007 on Flickr, Creative Commons license

 Suppose we have a big bowl of marbles. How can we estimate how many?

- I don't want to count every marble individually
- I have a bag of 100 other marbles of the same size, but a different color
- What if I mix them?

Estimating marbles

- I mix 100 black marbles into the bowl
 - Stir well ...
- I draw out 100 marbles at random
- 20 of them are black
- How many marbles were in the bowl to begin with?

Estimating Test Suite Quality

- Now, instead of a bowl of marbles, I have a program with bugs
- I add 100 new bugs
 - Assume they are exactly like real bugs in every way
 - I make 100 copies of my program, each with one of my 100 new bugs
- I run my test suite on the programs with seeded bugs ...
 - ... and the tests reveal 20 of the bugs
 - (the other 80 program copies do not fail)

What can I infer about my test suite?

Basic Assumptions

- We'd like to judge effectiveness of a test suite in finding real faults, by measuring how well it finds seeded fake faults.
- Valid to the extent that the seeded bugs are representative of real bugs
 - Not necessarily identical (e.g., black marbles are not identical to clear marbles); but the differences should not affect the selection
 - E.g., if I mix metal ball bearings into the marbles, and pull them out with a magnet, I don't learn anything about how many marbles were in the bowl

Mutation testing

- A mutant is a copy of a program with a mutation
- A mutation is a syntactic change (a seeded bug)
 - Example: change (i < 0) to (i <= 0)
- Run test suite on all the mutant programs
- A mutant is killed if it fails on at least one test case
- If many mutants are killed, infer that the test
 suite is also effective at finding real bugs

What do I need to believe?

- Mutation testing uses seeded faults (syntactic mutations) as black marbles
- Does it make sense? What must I assume?
 - What must be true of black marbles, if they are to be useful in counting a bowl of pink and red marbles?

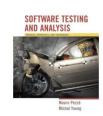
Mutation testing assumptions

- Competent programmer hypothesis:
 - Programs are nearly correct
 - Real faults are small variations from the correct program
 - => Mutants are reasonable models of real buggy programs
- Coupling effect hypothesis:
 - Tests that find simple faults also find more complex faults
 - Even if mutants are not perfect representatives of real faults, a test suite that kills mutants is good at finding real faults too

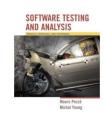
Mutation Operators

- Syntactic change from legal program to legal program
 - So: Specific to each programming language. C++ mutations don't work for Java, Java mutations don't work for Python
- Examples:
 - crp: constant for constant replacement
 - for instance: from (x < 5) to (x < 12)
 - select from constants found somewhere in program text
 - ror: relational operator replacement
 - for instance: from $(x \le 5)$ to $(x \le 5)$
 - vie: variable initialization elimination
 - change int x =5; to int x;

Live Mutants


• Scenario:

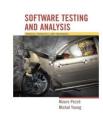
- We create 100 mutants from our program
- We run our test suite on all 100 mutants, plus the original program
- The original program passes all tests
- 94 mutant programs are killed (fail at least one test)
- 6 mutants remain *alive*
- What can we learn from the living mutants?


How mutants survive

- A mutant may be equivalent to the original program
 - Maybe changing (x < 0) to (x <= 0) didn't change the output at all! The seeded "fault" is not really a "fault".
 - Determining whether a mutant is equivalent may be easy or hard; in the worst case it is undecideable
- Or the test suite could be inadequate
 - If the mutant could have been killed, but was not, it indicates a weakness in the test suite
 - But adding a test case for just this mutant is a bad idea. We care about the real bugs, not the fakes!

Variations on Mutation

- Weak mutation
- Statistical mutation


Weak mutation

- Problem: There are lots of mutants. Running each test case to completion on every mutant is expensive
 - Number of mutants grows with the square of program size
- Approach:
 - Execute meta-mutant (with many seeded faults) together with original program
 - Mark a seeded fault as "killed" as soon as a difference in intermediate state is found
 - Without waiting for program completion
 - Restart with new mutant selection after each "kill"

Statistical Mutation

- Problem: There are lots of mutants. Running each test case on every mutant is expensive
 - It's just too expensive to create N² mutants for a program of N lines (even if we don't run each test case separately to completion)
- Approach: Just create a random sample of mutants
 - May be just as good for assessing a test suite
 - Provided we don't design test cases to kill particular mutants (which would be like selectively picking out black marbles anyway)

In real life ...

- Fault-based testing is a widely used in semiconductor manufacturing
 - With good *fault models* of typical manufacturing faults, e.g., "stuck-at-one" for a transistor
 - But fault-based testing for *design errors* is more challenging (as in software)
- Mutation testing is not widely used in industry
 - But plays a role in software testing research, to compare effectiveness of testing techniques
- Some use of fault models to design test cases is important and widely practiced

Summary

- If bugs were marbles ...
 - We could get some nice black marbles to judge the quality of test suites
- Since bugs aren't marbles ...
 - Mutation testing rests on some troubling assumptions about seeded faults, which may not be statistically representative of real faults
- Nonetheless ...
 - A model of typical or important faults is invaluable information for designing and assessing test suites

