
Testing Object Oriented Software

Chapter 15p

Learning objectivesLearning objectives

• Understand how object orientation impacts • Understand how object orientation impacts
software testing

What characteristics matter? Why?– What characteristics matter? Why?
– What adaptations are needed?

• Understand basic techniques to cope with each key • Understand basic techniques to cope with each key
characteristic

• Understand staging of unit and integration Understand staging of unit and integration
testing for OO software (intra-class and inter-
class testing)class testing)

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 2

Characteristics of OO Software

15.2

Characteristics of OO Software
Typical OO software characteristics that impact

itesting
• State dependent behavior
• Encapsulation
• Inheritance
• Polymorphism and dynamic binding
• Abstract and generic classesAbstract and generic classes
• Exception handling

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 3

Quality activities and OO SWQuality activities and OO SW

w
R

ev
ie

w

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 4

OO definitions of unit and integration
testing

• Procedural software
it i l f ti d – unit = single program, function, or procedure

more often: a unit of work that may correspond to one or more intertwined
functions or programs

• Object oriented software
– unit = class or (small) cluster of strongly related classes

(e.g., sets of Java classes that correspond to exceptions)(g p p)
– unit testing = intra-class testing
– integration testing = inter-class testing (cluster of classes)

– dealing with single methods separately is usually too expensive (complex
scaffolding), so methods are usually tested in the context of the class they
belong tobelong to

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 5

Orthogonal approach: Stages
15.3

g pp g

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 6

Intraclass State Machine Testing

15.4/5

Intraclass State Machine Testing

• Basic idea: • Basic idea:
– The state of an object is modified by operations

Methods can be modeled as state transitions– Methods can be modeled as state transitions
– Test cases are sequences of method calls that

traverse the state machine modeltraverse the state machine model

• State machine model can be derived from
specification (functional testing) code specification (functional testing), code
(structural testing), or both

h i d d i bi di
(c) 2008 Mauro Pezzè & Michal Young

[Later: Inheritance and dynamic binding]
Ch 15, slide 7

Informal state-full specificationsInformal state-full specifications

Slot: represents a slot of a computer model. Slot: represents a slot of a computer model.
.... slots can be bound or unbound. Bound slots are
assigned a compatible component, unbound slots are
empty. Class slot offers the following services:

• Install: slots can be installed on a model as required or
optionaloptional.
...

• Bind: slots can be bound to a compatible component.p p
...

• Unbind: bound slots can be unbound by removing the
b d tbound component.

• IsBound: returns the current binding, if bound;
otherwise returns the special value empty

(c) 2008 Mauro Pezzè & Michal Young

otherwise returns the special value empty.

Ch 15, slide 8

Identifying states and transitionsIdentifying states and transitions

• From the informal specification we can identify • From the informal specification we can identify
three states:

Not installed– Not_installed
– Unbound

B d– Bound

• and four transitions
– install: from Not_installed to Unbound
– bind: from Unbound to Bound
– unbind: ...to Unbound
– isBound: does not change state

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 9

Deriving an FSM and test casesDeriving an FSM and test cases

i B d

Not present Unbound Bound
1 20

isBound

unBind
incorporate

Not present Unbound Bound
isBound

bind

unBind

• TC-1: incorporate, isBound, bind, isBound
• TC-2: incorporate, unBind, bind, unBind, isBoundp , , , ,

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 10

Testing with State DiagramsTesting with State Diagrams

• A statechart (called a “state diagram” in UML) • A statechart (called a state diagram in UML)
may be produced as part of a specification or
designdesign

• May also be implied by a set of message sequence charts
(interaction diagrams), or other modeling formalisms(g), g

• Two options:
– Convert (“flatten”) into standard finite-state Convert (flatten) into standard finite state

machine, then derive test cases
– Use state diagram model directlyg y

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 11

Statecharts specificationStatecharts specification
class model

method of
class Modelsuper-state or

“OR t t ”“OR-state”

called by
class Model

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 12

From Statecharts to FSMsFrom Statecharts to FSMs

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 13

Statechart based criteriaStatechart based criteria

• In some cases “flattening” a Statechart to a • In some cases, flattening a Statechart to a
finite-state machine may cause “state
explosion”explosion

• Particularly for super-states with “history”

• Alternative: Use the statechart directly• Alternative: Use the statechart directly
• Simple transition coverage:

t ll t iti f th i i l St t h texecute all transitions of the original Statechart
• incomplete transition coverage of corresponding FSM

useful for complex statecharts and strong time constraints • useful for complex statecharts and strong time constraints
(combinatorial number of transitions)

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 14

Interclass Testing

15.6

Interclass Testing

• The first level of integration testing for object• The first level of integration testing for object-
oriented software

Focus on interactions between classes– Focus on interactions between classes

• Bottom-up integration according to “depends”
l tirelation

– A depends on B: Build and test B, then A

• Start from use/include hierarchy
– Implementation-level parallel to logical “depends” relation

Cl A k th d ll l B• Class A makes method calls on class B
• Class A objects include references to class B methods

– but only if reference means “is part of”but only if reference means is part of

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 15

OrderCustomer

1 *

Account

1 0..*

Package

1 *

LineItem

1

*
USAccount OtherAccount

CustomerCare

*

*

SimpleItem
UKAccountJPAccount EUAccount

CompositeItem

Model ComponentPriceList

*
*

*
*

from a class
diagram

Model Component

1 * 1 0..1

PriceList

* *diagram... Slot

1
*
1 1

ModelDB ComponentDBSlotDB

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 16

CSVdb

to a hierarchy....to a hierarchy
OrderCustomer Package

Component
USAccount OtherAccount

P i Li t ComponentPriceListCustomerCare

Model
UKAccountJPAccount EUAccount

ComponentDB

Slot

M d lDBNote: we may have ModelDB SlotDBNote: we may have
to break loops and
generate stubs

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 17

g

Interactions in Interclass TestsInteractions in Interclass Tests
• Proceed bottom-upp
• Consider all combinations of interactions

example: a test case for class Order includes a call to – example: a test case for class Order includes a call to
a method of class Model, and the called method calls
a method of class Slot, exercise all possible relevant , p
states of the different classes

– problem: combinatorial explosion of cases
– so select a subset of interactions:

• arbitrary or random selection
• plus all significant interaction scenarios that have been

previously identified in design and analysis: sequence +
collaboration diagrams

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 18

g

sequence diagram

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 19

Using Structural Information

15.7

Using Structural Information

• Start with functional testing• Start with functional testing
– As for procedural software, the specification (formal

or informal) is the first source of information for or informal) is the first source of information for
testing object-oriented software

• “Specification” widely construed: Anything from a p y y g
requirements document to a design model or detailed
interface description

Th dd i f ti f th d (t t l • Then add information from the code (structural
testing)
– Design and implementation details not available

from other sources

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 20

From the implementation ...
public class Model extends Orders.CompositeItem {
....

private boolean legalConfig = false; // memoized private instance private boolean legalConfig false; // memoized
....

public boolean isLegalConfiguration() {
if (! legalConfig) {

variable

if (! legalConfig) {
checkConfiguration();

}
t l lC fi return legalConfig;

}
.....

i h dprivate void checkConfiguration() {
legalConfig = true;
for (int i=0; i < slots.length; ++i) {

private method

(; g ;) {
Slot slot = slots[i];
if (slot.required && ! slot.isBound()) {

legalConfig = false;

(c) 2008 Mauro Pezzè & Michal Young

legalConfig false;
} ...} ... }

...... Ch 15, slide 21

Intraclass data flow testingIntraclass data flow testing

• Exercise sequences of methods • Exercise sequences of methods
– From setting or modifying a field value

To using that field value– To using that field value

W d l fl h h • We need a control flow graph that encompasses
more than a single method ...

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 22

The intraclass control flow graphThe intraclass control flow graph
Control flow for each method
+
node for class
+

Method
addComponent

Method
selectModel

edges
from node class to the start

nodes of the methods
from the end nodes of the

methods to node class Method
checkConfiguration

=> control flow through sequences
of method calls

g

class Model

(c) 2008 Mauro Pezzè & Michal Young

class Model

Ch 15, slide 23

Interclass structural testingInterclass structural testing

• Working “bottom up” in dependence hierarchy• Working bottom up in dependence hierarchy
• Dependence is not the same as class hierarchy; not always

the same as call or inclusion relation.
• May match bottom-up build order

– Starting from leaf classes, then classes that use leaf
classes, ...

• Summarize effect of each method: Changing or
using object state, or bothg j ,
– Treating a whole object as a variable (not just

primitive types)

(c) 2008 Mauro Pezzè & Michal Young

p yp)

Ch 15, slide 24

Inspectors and modifiersInspectors and modifiers
• Classify methods (execution paths) as

– inspectors: use, but do not modify, instance
variables
modifiers: modif b t not se instance ariables– modifiers: modify, but not use instance variables

– inspector/modifiers: use and modify instance
variablesvariables

• Example – class slot:Example class slot:
– Slot() modifier
– bind() modifier() f
– unbind() modifier
– isbound() inspector

(c) 2008 Mauro Pezzè & Michal Young

() p

Ch 15, slide 25

Definition-Use (DU) pairsDefinition-Use (DU) pairs
instance variable legalConfigg g

<model (1.2), isLegalConfiguration (7.2)>
ddC t (4 6) i L lC fi ti (7 2)<addComponent (4.6), isLegalConfiguration (7.2)>

<removeComponent (5.4), isLegalConfiguration (7.2)>
<checkConfiguration (6.2), isLegalConfiguration (7.2)>g (), g g ()
<checkConfiguration (6.3), isLegalConfiguration (7.2)>
<addComponent (4.9), isLegalConfiguration (7.2)>

Each pair corresponds to a test case
note that

some pairs may be infeasible
to cover pairs we may need to find complex sequences

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 26

Definitions from modifiersDefinitions from modifiers
Definitions of instance
variable slot in class

void addComponent(int slotIndex, String sku) 4.1

variable slot in class
model

addComponent (4.5)
Component comp = new Component(order sku) 4 3

(componentDB.contains(sku)) 4.2

True

addComponent (4.7)
addComponent (4.8)
selectModel (2 3)

Component comp = new Component(order, sku) 4.3

(comp.isCompatible(slot.slotID)) 4.4

TrueFalse

False

selectModel (2.3)
removeComponent (5.3) slot.bind(comp) 4.7slot.unbind(); 4.5

legalConfig = false; 4 6

TrueFalse

legalConfig = false; 4.6

slot.unbind(); 4.8
Slot() modifier
bind() modifier

exit addCompoment 4 10

legalConfig = false; 4.9unbind() modifier
isbound() inspector

(c) 2008 Mauro Pezzè & Michal Young

exit addCompoment 4.10

Ch 15, slide 27

Uses from inspectorsUses from inspectors
Uses of instance
variables slot in class

void checkConfiguration() 6.1

Slot slot =slots[slotIndex]; variables slot in class
model

removeComponent (5.2)

legalConfig = true

int i = 0 6 3

6.2

checkConfiguration (6.4)
checkConfiguration (6.5)
checkConfiguration (6 7)

i < slot.length 6.4

int i = 0 6.3

checkConfiguration (6.7)
Slot slot = slots[i]

True

6.5

False++i
False

6.6Slot() modifier
bind() modifier

bi d() difi if (slot.required && ! slot.isBound()

legalConfig = false exit checkConfiguration

True
6.7

6.8 6.9

unbind() modifier
isbound() inspector

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 28

Stubs Drivers and Oracles for Classes

15.8

Stubs, Drivers, and Oracles for Classes

• Problem: State is encapsulated• Problem: State is encapsulated
– How can we tell whether a method had the correct

effect?effect?

• Problem: Most classes are not complete
programsprograms
– Additional code must be added to execute them

• We typically solve both problems together, with
ff ldiscaffolding

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 29

Scaffolding T l lScaffolding

DriverDriver

Tool example:
JUnit

DriverDriver

Classes to
b t t dbe tested

Tool example:Tool example:
MockMaker

StubsStubs

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 30

ApproachesApproaches

• Requirements on scaffolding approach: • Requirements on scaffolding approach:
Controllability and Observability

• General/reusable scaffolding
Across projects; build or buy tools– Across projects; build or buy tools

Project specific scaffolding• Project-specific scaffolding
– Design for test

Ad hoc per class or even per test case– Ad hoc, per-class or even per-test-case

• Usually a combination

(c) 2008 Mauro Pezzè & Michal Young

• Usually a combination

Ch 15, slide 31

OraclesOracles

• Test oracles must be able to check the • Test oracles must be able to check the
correctness of the behavior of the object when
executed with a given inputexecuted with a given input

• Behavior produces outputs and brings an object
i t t tinto a new state
– We can use traditional approaches to check for the

correctness of the o tp tcorrectness of the output
– To check the correctness of the final state we need

to access the stateto access the state

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 32

Accessing the stateAccessing the state

• Intrusive approaches• Intrusive approaches
– use language constructs (C++ friend classes)

add inspector methods– add inspector methods
– in both cases we break encapsulation and we may

produce undesired resultsproduce undesired results

• Equivalent scenarios approach:
t i l t d i l t – generate equivalent and non-equivalent sequences

of method invocations
compare the final state of the object after – compare the final state of the object after
equivalent and non-equivalent sequences

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 33

Equivalent Scenarios ApproachEquivalent Scenarios Approach

selectModel(M1) EQUIVALENTselectModel(M1)
addComponent(S1,C1)
addComponent(S2 C2)

EQUIVALENT
selectModel(M2)
addComponent(S1,C1)
i L lC fi ti ()addComponent(S2,C2)

isLegalConfiguration()
deselectModel()

isLegalConfiguration()

deselectModel()
selectModel(M2)
addComponent(S1 C1)

NON EQUIVALENT
selectModel(M2)addComponent(S1,C1)

isLegalConfiguration()

selectModel(M2)
addComponent(S1,C1)
addComponent(S2,C2)
isLegalConfiguration()

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 34

Generating equivalent
sequencessequences

• remove unnecessary (“circular”) methods
selectModel(M1)
addComponent(S1,C1)p (,)
addComponent(S2,C2)
isLegalConfiguration()isLegalConfiguration()
deselectModel()
selectModel(M2)
addComponent(S1,C1) p (,)
isLegalConfiguration()

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 35

Generating non-equivalent scenariosGenerating non equivalent scenarios
selectModel(M1)
ddC (S1 C1)

• Remove and/or
shuffle essential

addComponent(S1,C1)

addComponent(S2,C2)
actions

• Try generating
sequences that

()

isLegalConfiguration()
deselectModel()sequences that

resemble real faults
()

selectModel(M2)
addComponent(S1 C1) addComponent(S1,C1)

isLegalConfiguration()

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 36

Verify equivalenceVerify equivalence
In principle: Two states are equivalent if all possible

sequences of methods starting from those states produce sequences of methods starting from those states produce
the same results

Practically:
• add inspectors that disclose hidden state and compare the p p

results
– break encapsulation

i th lt bt i d b l i t f th d• examine the results obtained by applying a set of methods
– approximate results

• add a method “compare” that specializes the default • add a method compare that specializes the default
equal method
– design for testability

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 37

15.9

Polymorphism and dynamic binding

One variable potentially bound to One variable potentially bound to p yp y
methods of different (submethods of different (sub--)classes)classes

“Isolated” calls: the combinatorial
explosion problem

abstract class Credit {
...

abstract boolean validateCredit(Account a, int amt, CreditCard c);
...
}

USAccount
UKAccount
EUAccount

EduCredit
BizCredit
IndividualCredit

VISACard
AmExpCard
StoreCard

JPAccount
OtherAccount

The combinatorial problem: 3 x 5 x 3 = 45 possible combinations
of dynamic bindings (just for this one method!)

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 39

The combinatorial approachThe combinatorial approach
Account Credit creditCard

USAccount EduCredit VISACard
Identify a set of

USAccount EduCredit VISACard
USAccount BizCredit AmExpCard
USAccount individualCredit ChipmunkCard

y
combinations that
cover all pairwise

bi ti f UKAccount EduCredit AmExpCard
UKAccount BizCredit VISACard
UKAccount individualCredit ChipmunkCard

combinations of
dynamic bindings

UKAccount individualCredit ChipmunkCard
EUAccount EduCredit ChipmunkCard
EUAccount BizCredit AmExpCard
EUAccount individualCredit VISACard
JPAccount EduCredit VISACard
JPAccount BizCredit ChipmunkCardJPAccount BizCredit ChipmunkCard
JPAccount individualCredit AmExpCard
OtherAccount EduCredit ChipmunkCard

Same motivation as
pairwise specification-
b d t ti

(c) 2008 Mauro Pezzè & Michal Young

OtherAccount BizCredit VISACard
OtherAccount individualCredit AmExpCard

based testing

Ch 15, slide 40

Combined calls: undesired effectsCombined calls: undesired effects
public abstract class Account { ...

public int getYTDPurchased() { p g () {
if (ytdPurchasedValid) { return ytdPurchased; }
int totalPurchased = 0;
for (Enumeration e = subsidiaries.elements() ; e.hasMoreElements();)(() ())

{ Account subsidiary = (Account) e.nextElement();
totalPurchased += subsidiary.getYTDPurchased();

}
for (Enumeration e = customers.elements(); e.hasMoreElements();)

{ Customer aCust = (Customer) e.nextElement();
totalPurchased += aCust.getYearlyPurchase();

}}
ytdPurchased = totalPurchased;
ytdPurchasedValid = true;

t t t lP h d
Problem:

return totalPurchased;
} … }

different implementations of
methods getYDTPurchased
refer to different currencies.

(c) 2008 Mauro Pezzè & Michal Young

refer to different currencies.

Ch 15, slide 41

A data flow approachpp
public abstract class Account {
...

public int getYTDPurchased() {
step 1: identify
polymorphic calls binding public int getYTDPurchased() {

if (ytdPurchasedValid) { return ytdPurchased; }
int totalPurchased = 0;
for (Enumeration e = subsidiaries.elements() ; e.hasMoreElements();)

{
Account subsidiary = (Account) e nextElement();

polymorphic calls, binding
sets, defs and uses

Account subsidiary (Account) e.nextElement();
totalPurchased += subsidiary.getYTDPurchased();

}
for (Enumeration e = customers.elements(); e.hasMoreElements();)

{
Customer aCust = (Customer) e nextElement();

totalPurchased
used and defined

Customer aCust (Customer) e.nextElement();
totalPurchased += aCust.getYearlyPurchase();

}
ytdPurchased = totalPurchased;
ytdPurchasedValid = true;
return totalPurchased;

totalPurchased
used and definedreturn totalPurchased;

}
…
}

used and defined

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 42

Def-Use (dataflow) testing of
polymorphic calls

• Derive a test case for each possible • Derive a test case for each possible
polymorphic <def,use> pair
– Each binding must be considered individuallyEach binding must be considered individually
– Pairwise combinatorial selection may help in

reducing the set of test cases

• Example: Dynamic binding of currencyp y g y
– We need test cases that bind the different calls to

different methods in the same run
– We can reveal faults due to the use of different

currencies in different methods

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 43

Inheritance

15.10

Inheritance

• When testing a subclass • When testing a subclass ...
– We would like to re-test only what has not been

thoroughly tested in the parent classthoroughly tested in the parent class
• for example, no need to test hashCode and getClass

methods inherited from class Object in Java

– But we should test any method whose behavior may
have changed

• even accidentally!

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 44

Reusing Tests
with the Testing History Approach

• Track test suites and test executions
– determine which new tests are needed
– determine which old tests must be re-executed

• New and changed behavior ...New and changed behavior ...
– new methods must be tested
– redefined methods must be tested but we can redefined methods must be tested, but we can

partially reuse test suites defined for the ancestor
– other inherited methods do not have to be retestedother inherited methods do not have to be retested

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 45

Testing historyTesting history

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 46

Inherited unchangedInherited, unchanged

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 47

Newly introduced methodsNewly introduced methods

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 48

Overridden methodsOverridden methods

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 49

Testing History – some detailsTesting History – some details

• Abstract methods (and classes)• Abstract methods (and classes)
– Design test cases when abstract method is

introduced (even if it can’t be executed yet)introduced (even if it can t be executed yet)

• Behavior changes
Sh ld id th d “ d fi d” if th – Should we consider a method “redefined” if another
new or redefined method changes its behavior?

• The standard “testing history” approach does not do this• The standard testing history approach does not do this
• It might be reasonable combination of data flow (structural)

OO testing with the (functional) testing history approach

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 50

Testing History - SummaryTesting History - Summary

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 51

Does testing history help?Does testing history help?

• Executing test cases should (usually) be cheap• Executing test cases should (usually) be cheap
– It may be simpler to re-execute the full test suite of

the parent classthe parent class
– ... but still add to it for the same reasons

But sometimes execution is not cheap • But sometimes execution is not cheap ...
– Example: Control of physical devices

O l t t it– Or very large test suites
• Ex: Some Microsoft product test suites require more than

one night (so daily build cannot be fully tested)one night (so daily build cannot be fully tested)

– Then some use of testing history is profitable

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 52

Testing generic classes

15.11

Testing generic classes
a generic class

l P i it Q <El I l t C bl > { }class PriorityQueue<Elem Implements Comparable> {...}

is designed to be instantiated with many different parameter types
PriorityQueue<Customers>PriorityQueue<Customers>
PriorityQueue<Tasks>

A generic class is typically designed to behave consistently
some set of permitted parameter types. p p yp

Testing can be broken into two partsTesting can be broken into two parts
– Showing that some instantiation is correct
– showing that all permitted instantiations behave consistently

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 53

Show that some instantiation is correctShow that some instantiation is correct

• Design tests as if the parameter were copied • Design tests as if the parameter were copied
textually into the body of the generic class.

We need source code for both the generic class and – We need source code for both the generic class and
the parameter class

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 54

Identify (possible) interactionsIdentify (possible) interactions

• Identify potential interactions between generic • Identify potential interactions between generic
and its parameters

Identify potential interactions by inspection or – Identify potential interactions by inspection or
analysis, not testing

– Look for: method calls on parameter object access – Look for: method calls on parameter object, access
to parameter fields, possible indirect dependence

– Easy case is no interactions at all (e.g., a simple Easy case is no interactions at all (e.g., a simple
container class)

• Where interactions are possible, they will need Where interactions are possible, they will need
to be tested

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 55

Example interactionExample interaction

class PriorityQueueclass PriorityQueue
<Elem implements Comparable> {...}

P i it th “C bl ” i t f • Priority queue uses the “Comparable” interface
of Elem to make method calls on the generic

tparameter
• We need to establish that it does so

consistently
– So that if priority queue works for one kind of

Comparable element, we can have some confidence
it does so for others

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 56

Testing variation in instantiationTesting variation in instantiation

• We can’t test every possible instantiation• We can t test every possible instantiation
– Just as we can’t test every possible program input

 b t th i t t (ifi ti) • ... but there is a contract (a specification)
between the generic class and its parameters
– Example: “implements Comparable” is a

specification of possible instantiations
Oth t t b itt l t– Other contracts may be written only as comments

• Functional (specification-based) testing
h i itechniques are appropriate

– Identify and then systematically test properties
i li d b h ifi iimplied by the specification

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 57

Example: Testing instantiation variationExample: Testing instantiation variation

Most but not all classes that implement Comparable also satisfy the Most but not all classes that implement Comparable also satisfy the
rule

(x.compareTo(y) == 0) == (x.equals(y))
(from java.lang.Comparable)

So test cases for PriorityQueue should include So test cases for PriorityQueue should include
• instantiations with classes that do obey this rule:

class String

• instantiations that violate the rule:
class BigDecimal with values 4.0 and 4.00

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 58

Exception handling

15.12

Exception handling
void addCustomer(Customer theCust) {

customers.add(theCust);
exceptions

create implicit customers.add(theCust);
}
public static Account

newAccount(...)

create implicit
control flows
and may be
handled by

throws InvalidRegionException
{

Account thisAccount = null;

handled by
different
handlers

String regionAbbrev = Regions.regionOfCountry(
mailAddress.getCountry());

if (regionAbbrev == Regions.US) {
thisAccount = new USAccount();

} else if (regionAbbrev == Regions.UK) {
....

i i i i} else if (regionAbbrev == Regions.Invalid) {
throw new

InvalidRegionException(mailAddress.getCountry());
}

(c) 2008 Mauro Pezzè & Michal Young

}
...

} Ch 15, slide 59

Testing exception handlingTesting exception handling

• Impractical to treat exceptions like normal flow• Impractical to treat exceptions like normal flow
• too many flows: every array subscript reference, every

memory allocation, every cast, ... y , y ,
• multiplied by matching them to every handler that could

appear immediately above them on the call stack.
 t ll i ibl• many actually impossible

• So we separate testing exceptions
d i ti (t t t t th • and ignore program error exceptions (test to prevent them,

not to handle them)

• What we do test: Each exception handler and • What we do test: Each exception handler, and
each explicit throw or re-throw of an exception

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 60

Testing program exception handlersTesting program exception handlers

• Local exception handlers• Local exception handlers
– test the exception handler (consider a subset of

points bound to the handler)points bound to the handler)

• Non-local exception handlers
Diffi lt t d t i ll i i f i t – Difficult to determine all pairings of <points,
handlers>
So enforce (and test for) a design rule: – So enforce (and test for) a design rule:
if a method propagates an exception, the method
call should have no other effectcall s ould ave o ot e effect

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 61

SummarySummary

• Several features of object oriented languages • Several features of object-oriented languages
and programs impact testing

from encapsulation and state dependent structure – from encapsulation and state-dependent structure
to generics and exceptions

– but only at unit and subsystem levels– but only at unit and subsystem levels
– and fundamental principles are still applicable

Basic approach is orthogonal• Basic approach is orthogonal
– Techniques for each major issue (e.g., exception

handling generics inheritance) can be applied handling, generics, inheritance, ...) can be applied
incrementally and independently

(c) 2008 Mauro Pezzè & Michal Young Ch 15, slide 62

