
Testing in the Lifecycle

Stuart Anderson

Stuart Anderson Testing in the Lifecycle c©2011



1

Software was difficult to get right in 1982

Stuart Anderson Testing in the Lifecycle c©2011



A 1995 Department of Defence Software Study 2

It was still difficult in 1995

Stuart Anderson Testing in the Lifecycle c©2011



Success rate of government IT projects and programmes 3

...and in 2007

Source: The Guardian, 18 May 2007
Figures from Department for Work and Pensions spokesman (63%)
And Joe Harley, Chief Information Officer, DWP (30%)

Stuart Anderson Testing in the Lifecycle c©2011



4

And testing costs are significant

Stuart Anderson Testing in the Lifecycle c©2011



Slide 4: References

Winokur, M.; Grinman, A.; Yosha, I.; Gallant, R.; Measuring the effectiveness
of introducing new methods in the software development process, Euromicro
Conference, 1998. Proceedings. 24th , vol.2, no., pp.800-807 vol.2, 25-27 Aug
1998.

DOI: http://dx.doi.org/10.1109/EURMIC.1998.708105

http://dx.doi.org/10.1109/EURMIC.1998.708105


5

Cost of Testing vs Cost of Defects

• NIST report (2002): “The Economic Impacts of Inadequate Infrastructure for
Software Testing”

http://www.nist.gov/director/planning/upload/report02-3.pdf

• Notes that “developers already spend approximately 80% of software
development costs on identifying and correcting defects”.

• “Identifying and correcting defects” not necessarily the same thing as the cost
of testing, but still...

Stuart Anderson Testing in the Lifecycle c©2011

http://www.nist.gov/director/planning/upload/report02-3.pdf


6

Costs of fixing defects found at different stages

Stuart Anderson Testing in the Lifecycle c©2011



7

Costs of Defects

• Defects in the specification are even more costly to remove if we do not
eliminate them early.

• Different software lifecycles distribute testing (verification — ‘building the
thing right’, and validation – ‘building the right thing’ ) differently.

• The different distributions of test activity can have an impact on where bugs
are discovered.

• We consider three representative lifecycles and consider where testing is located
in each:

The V-model, Boehm’s spiral model and eXtreme Programming (XP)

Stuart Anderson Testing in the Lifecycle c©2011



8

Recap: Waterfall model of software development

1. Requirements
2. Design
3. Implementation
4. Testing
5. Release and maintenance

Sequential, no feedback — Ironically its “author”, Royce, presented it as an
example of a broken model

Stuart Anderson Testing in the Lifecycle c©2011



9

V-model

Stuart Anderson Testing in the Lifecycle c©2011



10

V-model Rationale

• This is a modified version of the waterfall model.

• Tests are created at the point the activity they validate is being carried out.
So, for example, the acceptance test is created when the systems analysis is
carried out.

• Failure to meet the test requires a further iteration beginning with the activity
that has failed the validation.

• V-model is focused on creating tests in a structured manner.

• It is popular with developers of systems that are highly regulated because it
is well suited to creating evidence that can be used to justify a system to a
regulator.

Stuart Anderson Testing in the Lifecycle c©2011



11

Boehm’s Spiral Model

Stuart Anderson Testing in the Lifecycle c©2011



12

Spiral Model Rationale

• The spiral model is focused on controlling project risk and attempting formally
to address project risk throughout the lifecycle.

• V&V activity is spread through the lifecycle with more explicit validation of
the preliminary specification and the early stages of design. The goal here is
to subject the early stages of design to V&V activity.

• At the early stages there may be no code available so we are working with
models of the system and environment and verifying that the model exhibits
the required behaviours.

Stuart Anderson Testing in the Lifecycle c©2011



13

XP principles
• eXtreme Programming advocates

working directly with code almost
all the time.

• The 12 principles of XP
summarise the approach.

• Development is test-driven.

• Tests play a central role in
refactoring activity.

• “Agile” development mantra:
Embrace Change.

1. Test-driven development
2. The planning game
3. On-site customer
4. Pair programming
5. Continuous integration
6. Refactoring
7. Small releases
8. Simple design
9. System metaphor

10. Collective code ownership
11. Coding standards
12. 40-hour work week

Stuart Anderson Testing in the Lifecycle c©2011



14

eXtreme Programming (XP)

http://www.extremeprogramming.org/map/project.html

Stuart Anderson Testing in the Lifecycle c©2011

http://www.extremeprogramming.org/map/project.html


15

Summary

• We have considered three different approaches to the lifecycle and have seen
how testing fits in the lifecycles.

• Each approach will have a different testing cost and cost-profile through the
lifecycle.

• Lifecycles are often dependent on the type of product and how well we
understand project risk.

Stuart Anderson Testing in the Lifecycle c©2011



16

Required Readings

• Textbook (Pezzè and Young): Chapter 4, Test and Analysis Activities within
a Software Process

• Textbook (Pezzè and Young): Chapter 20, Planning and Monitoring the
Process

Stuart Anderson Testing in the Lifecycle c©2011



17

Suggested Readings

• Gregory M. Kapfhammer, Software Testing, In A. Tucker (Ed.), Second Edition,
The Computer Science and Engineering Handbook, Chapter 105, CRC Press,
2004.

• Mary Jean Harrold. 2000. Testing: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering (ICSE ’00). ACM, New
York, NY, USA, 61-72.
DOI: http://dx.doi.org/10.1145/336512.336532

• Winokur, M.; Grinman, A.; Yosha, I.; Gallant, R.; Measuring the effectiveness
of introducing new methods in the software development process, Euromicro
Conference, 1998. Proceedings. 24th , vol.2, no., pp.800-807 vol.2, 25-27 Aug
1998.
DOI: http://dx.doi.org/10.1109/EURMIC.1998.708105

Stuart Anderson Testing in the Lifecycle c©2011

http://www.cs.allegheny.edu/sites/gkapfham/54
http://dx.doi.org/10.1145/336512.336532
http://dx.doi.org/10.1109/EURMIC.1998.708105

