Testing in the Lifecycle

Stuart Anderson

® School of

informatics

Stuart Anderson Testing in the Lifecycle (©2011

(] School of _ ¢
- iInformatics

Software was difficult to get right in 1982

— Software ppid for
Software that could butzng!,g:llvered
be used after changes .
~3%
Software used ——
but later reworked
or abandoned
19%
- Software delivered
Software that could
be "33" as delivered but4q,e%er used
~2%

Year 1982: Nine Contracts Totalling $6.8 Million

Stuart Anderson Testing in the Lifecycle (©2011

School of _ e

)
A 1995 Department of Defence Software Study 2 'nformahcs

It was still difficult in 1995

3%

29%

46%

20%
2%

B Software paid for, but not delivered - 29%

[l Software used, but extensively reworked or abandoned - 20%
[J Software used as delivered - 2%

] software delivered, but not successfully used - 46%

O] software used after changes - 3%
Total Software Costs - $35.7 billion

Stuart Anderson Testing in the Lifecycle (©2011

b/ f School of _e
Success rate of government IT projects and programmes 3 informatics

...and in 2007

B On budget, on
time, on spec

B Anything in
between

ONever saw the
light of day

Source: The Guardian, 18 May 2007
Figures from Department for Work and Pensions spokesman (63%)
And Joe Harley, Chief Information Officer, DWP (30%)

Stuart Anderson Testing in the Lifecycle (©2011

And testing costs are significant

- inf

No. Metric Project A Project Al Project B Project C
1 Relative Cost of Test Type: Test Tvpe: Test Type: Test Type:
Software Testing (as FQT + Unit FQT Mainly FQT + Unit FQT Mainly
part of overall project Testing = Testing = Testing = Testing =
effort) 1500 man hrs testing + 810 man hrs 2000 man hrs 1100 man hrs
2500 man hrs
documentation and
SQA
Total _effort = 26000
man hrs Total effort = 7300 Total effort= 12000 Total effort = 14000
man hrs man hrs man hrs
Percentage:
I 15.3% | Percentage: Pert c: rcentage:
| 11% I I 16.6% | 8.57%
2 Integration duration as Integration: Integration: Integration: Integration:
part of overall project CSCI=4.0 mon = 3.0 mon CSCI=4.0 mon =11 mon
development duration System =4.0 mon System =9.0 mon
Total: = 24 months Total: = 41 months T'otal: = 36 months Total: =36 months
P tage CSCI: Percentage CSCI:
=16.67% | =11.1%
Percentage Integ: Percentage Integ: Percentaze Intes: . Percsnta Intep:
o,
[16.67%] [73%][25.0% |02 |
3 Cost of Requirements 16 changes 6 changes 2 changes 8 changes
Change 373 man hrs 100 man hrs 26 man hrs 70 man hrs
23.3 man hrs / change 16.7 man hrs / change 13 man hrs / change 8.75 man hrs / change
4 Functional Coverage New Video Card, 28 of 35 functions tested | -——=--emereeem= | oo
l Coverage = 80% |
5 Code Coverage According to literature, code coverage is about 55% when blackbox test only is executed [6], [7]

School of _ e
ormatics

Stuart Anderson

Testing in the Lifecycle

©2011

Slide 4: References

Winokur, M.; Grinman, A.; Yosha, |.; Gallant, R.; Measuring the effectiveness
of introducing new methods in the software development process, Euromicro

Conference, 1998. Proceedings. 24th , vol.2, no., pp.800-807 vol.2, 25-27 Aug
1998.

DOI: http://dx.doi.org/10.1109/EURMIC. 1998.708105

http://dx.doi.org/10.1109/EURMIC.1998.708105

o School of _ o
= Informatics

Cost of Testing vs Cost of Defects

e NIST report (2002): “The Economic Impacts of Inadequate Infrastructure for
Software Testing”

http://www.nist.gov/director/planning/upload/report02-3.pdf

e Notes that ‘“developers already spend approximately 80% of software
development costs on identifying and correcting defects”.

e “ldentifying and correcting defects” not necessarily the same thing as the cost
of testing, but still...

Stuart Anderson Testing in the Lifecycle (©2011

http://www.nist.gov/director/planning/upload/report02-3.pdf

® School of _ o
= iInformatics

Costs of fixing defects found at different stages

sbnc jo edreney

B85%

D %5 Defects
inroduced
in this phase

D % Nefects
found in
this phase
T Costty
repar defect
in this phase

§100

826

(‘A‘)ﬂlng L Init Funchion Fiedd Post
Tes! Tes: Tes! Meleaze

Source: Applied Sofftwore Measwement, Capers Jones, 1996

Stuart Anderson

Testing in the Lifecycle (©2011

o School of _ e
= informatics

Costs of Defects

e Defects in the specification are even more costly to remove if we do not
eliminate them early.

e Different software lifecycles distribute testing (verification — ‘building the
thing right’, and validation — ‘building the right thing’) differently.

e The different distributions of test activity can have an impact on where bugs
are discovered.

e \We consider three representative lifecycles and consider where testing is located
in each:

The V-model, Boehm’s spiral model and eXtreme Programming (XP)

Stuart Anderson Testing in the Lifecycle (©2011

o School of _ o
= iInformatics

Recap: Waterfall model of software development

Requirements

Design

Implementation

Testing

Release and maintenance

Ok

Sequential, no feedback — lronically its “author”, Royce, presented it as an
example of a broken model

Stuart Anderson Testing in the Lifecycle (©2011

less detail

more detail

Requirements
Analysis

N\

V-model

is validated by
System | o ______
Design
Object |_____. Unit
Design Testing

N\

School of _ e

()
5 Informatics

Acceptance
Testing

/

System
Testing

/

Coding

build system

> <

validate system

Stuart Anderson

Testing in the Lifecycle

©2011

o School of _ o
- informatics

V-model Rationale

e T his is a modified version of the waterfall model.

e Tests are created at the point the activity they validate is being carried out.
So, for example, the acceptance test is created when the systems analysis is
carried out.

e Failure to meet the test requires a further iteration beginning with the activity
that has failed the validation.

e V-model is focused on creating tests in a structured manner.

e |t is popular with developers of systems that are highly regulated because it
is well suited to creating evidence that can be used to justify a system to a
regulator.

Stuart Anderson Testing in the Lifecycle (©2011

School of _ e

([]
- informatics

Boehm’s Spiral Model

DETERMINE GOALS,
ALTERNATIVES,

CONSTRAINTS constraint®s
o ConS'“dmis ®
(?\
((\’b
@)
v ?}\4@ constr@"”
& 1
) =]
® W
«@ %,
X&'
W 4/{8 ’, &6,,')
Budget, Na ()

Budget, / Budget, Budget, by

W Requirements,

life-cycle plan
S,
n &/
fe 0,0
p,, Grgy. Of e,
00{6&‘9&00 Sp O

Implementation
plan

PLAN

Cs 7
7

EVALUATE ALTERNATIVES
AND RISKS
Risk analysis,
Risk analysis,
Risk analysis,
Risk analysis, Proto- Proto- \ Proto-
Prototype , type, type; type,
Concept of @ Detai
! & s etailed
operation ,e;‘z’@é‘ 6&\\9\0? design
6@‘\.\;\0) b@l
o &
@
G Code

N e Jare®

Q) a?\ d‘e&\(_},(\

2fe Unit test
System
Acceptance test
test
DEVELOP AND TEST

Stuart Anderson

Testing in the Lifecycle

©2011

] School of _ ¢
- informatics

Spiral Model Rationale

e The spiral model is focused on controlling project risk and attempting formally
to address project risk throughout the lifecycle.

o V&V activity is spread through the lifecycle with more explicit validation of
the preliminary specification and the early stages of design. The goal here is
to subject the early stages of design to V&V activity.

e At the early stages there may be no code available so we are working with
models of the system and environment and verifying that the model exhibits
the required behaviours.

Stuart Anderson Testing in the Lifecycle (©2011

XP principles

eXtreme Programming advocates
working directly with code almost

all the time.

The 12 principles of XP
summarise the approach.
Development is test-driven.

Tests play a central role in
refactoring activity.

“Agile” development mantra:

Embrace Change.

© NSOk

o School of _ o
= informatics

Test-driven development
The planning game
On-site customer

Pair programming
Continuous integration
Refactoring

Small releases

Simple design

System metaphor

. Collective code ownership
. Coding standards
. 40-hour work week

Stuart Anderson

Testing in the Lifecycle

©2011

(] School of
- informatics

eXtreme Programming (XP)
/”—_’—T i

ew User Story

w‘ime"ts Project Velocity Bugs
system 'fRe;D /rl_a:m\\ Customer

Arn::hitt::n::t:m'zl]wetanhﬂr Release g5, Tteration |Yersion,. Acceptance approval Small

) . — »
Spike * Planning a N Tests Releases
Uncertain (‘) Confident MNext Iteration

User Stories

Estimates Estimates

Splke Copvaght 2000), Doavan Wells

http://www.extremeprogramming.org/map/project.html

Stuart Anderson Testing in the Lifecycle (©2011

http://www.extremeprogramming.org/map/project.html

o School of _ o
= informatics

Summary

e We have considered three different approaches to the lifecycle and have seen
how testing fits in the lifecycles.

e Each approach will have a different testing cost and cost-profile through the
lifecycle.

e Lifecycles are often dependent on the type of product and how well we
understand project risk.

Stuart Anderson Testing in the Lifecycle (©2011

o School of _ o
—~ informatics

Required Readings

e Textbook (Pezzé and Young): Chapter 4, Test and Analysis Activities within
a Software Process

e Textbook (Pezzé and Young): Chapter 20, Planning and Monitoring the
Process

Stuart Anderson Testing in the Lifecycle (©2011

o School of _ e
—= informatics

Suggested Readings

e Gregory M. Kapfhammer, Software Testing, In A. Tucker (Ed.), Second Edition,
The Computer Science and Engineering Handbook, Chapter 105, CRC Press,
2004.

e Mary Jean Harrold. 2000. Testing: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering (ICSE '00). ACM, New
York, NY, USA, 61-72.

DOI: http://dx.doi.org/10.1145/336512.336532

e Winokur, M.; Grinman, A.; Yosha, |.; Gallant, R.; Measuring the effectiveness
of introducing new methods in the software development process, Euromicro
Conference, 1998. Proceedings. 24th , vol.2, no., pp.800-807 vol.2, 25-27 Aug
1998.

DOI: http://dx.doi.org/10.1109/EURMIC. 1998.708105

Stuart Anderson Testing in the Lifecycle (©2011

http://www.cs.allegheny.edu/sites/gkapfham/54
http://dx.doi.org/10.1145/336512.336532
http://dx.doi.org/10.1109/EURMIC.1998.708105

