
Software Testing: Lecture 13 12 March 2010

System Testing

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

2 March 2010 2Software Testing: Lecture 13

Overview

System testing is very heterogeneous and what we include in
the system test will depend on the particular application.
The following is a list of kinds of tests we might consider
applying and some assessment of their strengths and
weaknesses.
System testing can be very expensive and time consuming and
can involve the construction of physical components and
software to provide the test environment that may exceed the
cost of the primary software development.

2 March 2010 3Software Testing: Lecture 13

Capacity Testing

When: systems that are intended to cope with high volumes of
data should have their limits tested and we should consider how
they fail when capacity is exceeded
What/How: usually we will construct a harness that is capable
of generating a very large volume of simulated data that will
test the capacity of the system or use existing records
Why: we are concerned to ensure that the system is fit for
purpose – say ensuring that a medical records system can cope
with records for all people in the UK (for example).
Strengths: provides some confidence the system is capable of
handling high capacity.
Weaknesses: simulated data can be unrepresentative; can be
difficult to create representative tests; can take a long time to
run.

2 March 2010 4Software Testing: Lecture 13

Stress Testing

When: in systems that are intended to react in real-time e.g.
control systems, embedded systems, e.g. anti-lock brake system
What/How: usually we are interested in bursty traffic and
environmental extremes (e.g. lots of sensor messages together
with cold and wet conditions). Could build a test rig to test the
integration of the mechanical, electronics and software. If
changes are required in service then we can use a real system.
Why: these systems are most depended on in these kinds of
conditions - it is imperative that they function here.
Strengths: this is an essential kind of testing for this class of
systems – unavoidable.
Weaknesses: test environment may be unrepresentative or may
omit a component (e.g. in a car the radio environment is very
noisy – we may need to simulate this).

2 March 2010 5Software Testing: Lecture 13

Usability Testing

When: where the system has a significant user interface and it is
important to avoid user error (e.g. this could be a critical application
e.g. cockpit design in an aircraft or a consumer product that we want
to be an enjoyable system to use or we might be considering efficiency
(e.g. call-centre software)).
What/How: we could construct a simulator (e.g. cockpit) in the case of
embedded systems or we could just have many users try the system in
a controlled environment. We need to structure the test with clear
objectives (e.g. to reduce decision time, to support concurrent use of
certain functions…) and have good means of collecting & analysing data.
Why: there may be safety issues, we may want to produce something
more useable than competitors’ products…
Strengths: in well-defined contexts this can provide very good
feedback – often underpinned by some theory e.g. estimates of
cognitive load.
Weaknesses: some usability requirements are hard to express and hard
to test, it is possible to test extensively and then not know what to do
with the data.

2 March 2010 6Software Testing: Lecture 13

Security Testing

When: most systems that are open to the outside world and have a
function that should not be disrupted require some kind of security
test. Usually we are concerned to thwart malicious users.
What/How: there are a range of approaches. One is to use league
tables of bugs/errors to check and review the code (e.g. SANS top
twenty-five security-related programming errors). We might also
form a team that attempts to break/break into the system.
Why: some systems are essential and need to keep running, e.g. the
telephone system, some systems need to be secure to maintain
reputation.
Strengths: this is the best approach we have – most of the effort
should go into design and the use of known secure components.
Weaknesses: we only cover known ways in using checklists and we do
not take account of novelty – using a team to try to break does
introduce this.

2 March 2010 7Software Testing: Lecture 13

Performance Testing

When: many systems are required to meet performance targets
laid down in a service level agreement (e.g. does your ISP give
you 2Mb/s download?).
What/How: there are two approaches - modelling/simulation,
and direct test in a simulated environment (or in the real
environment).
Why: often a company charges for a particular level of service -
this may be disputed if the company fails to deliver. E.g. the
VISA payments system guarantees 5s authorisation time
delivers faster and has low variance. Customers would be
unhappy with less.
Strengths: can provide good evidence of the performance of
the system, modelling can identify bottlenecks and problems.
Weaknesses: issues with how representative tests are.

2 March 2010 8Software Testing: Lecture 13

Reliability Testing

When: we may want to guarantee some system will only fail very
infrequently (e.g. nuclear power control software – we might
claim no more than one failure in 10,000 hours of operation).
This is particularly important in telecommunications.
What/How: we need to create a representative test set and
gather enough information to support a statistical claim (this
might be bolstered by some modelling of the structure of the
system that demonstrates how overall failure rate relates to
component failure rate).
Why: we often need to make guarantees about reliability in
order to satisfy a regulator or we might know that the market
leader has a certain reliability that the market expects.
Strengths: if the test data is representative this can make
accurate predictions.
Weaknesses: we need a lot of data for high-reliability systems,
it is easy to be optimistic.

2 March 2010 9Software Testing: Lecture 13

Compliance Testing

When: we are selling into a “regulated” market and to sell we
need to show compliance. E.g. if we have a C compiler we should
be able to show it correctly compiles ANSI C.
What/How: often there will be standardised test sets that
constitute good coverage of the behaviour of the system (e.g. a
set of C programs, and the results of running them).
Why: we can identify the problem areas and create tests to
check that set of conditions.
Strengths: regulation shares the cost of tests across many
organisations so we can develop a very capable test set.
Weaknesses: there is a tendency for software producers to
orient towards the compliance test set and do much worse on
things outside the compliance test set.

2 March 2010 10Software Testing: Lecture 13

Availability/Reparability Testing

When: we are interested in avoiding long down times we are
interested in how often failure occurs and how long it takes to
get going again. Usually this is in the context of a service
supplier and this is a Key Performance Indicator.
What/How: similar to reliability testing – but here we might
seed errors or cause component failures and see how long they
take to fix or how soon the system can return once a component
is repaired.
Why: in providing a critical service we may not want long
interruptions (e.g. 999 service).
Strengths: similar to reliability.
Weaknesses: similar to reliability – in the field it may be much
faster to fix common problems because of learning.

2 March 2010 11Software Testing: Lecture 13

Documentation Testing

When: most systems that have documentation should have it
tested – and should be tested against the real system. Some
systems embed test cases in the documentation and using the
doc tests is an essential part of a new release.
What/How: test set is maintained that verifies the doc set
matches the system behaviour. Could also just get someone to
do the tutorial and point out the errors.
Why: the user gets really confused if the system does not
conform to the documentation.
Strengths: ensures consistency.
Weaknesses: not particularly good on checking consistency of
narrative rather than examples.

2 March 2010 12Software Testing: Lecture 13

Configuration Testing

When: throughout the life of the system when the software or
hardware configuration is altered.
What/How: usually we record a set of relationships or
constraints between different components e.g. libraries and
systems, hardware and drivers and if we change any component
we should check the configuration is maintained.
Why: configuration faults will often cause failures if they are
not corrected.
Strengths: addresses an increasingly common source of error.
It is possible to automate this style of testing.
Weaknesses: only as good as the record of dependencies
recorded in the system. There is no universal approach but
there are emerging standards to record configurations.

2 March 2010 13Software Testing: Lecture 13

Summary

There are a very wide range of potential tests that should be
applied to a system.
Not all systems require all tests.
Managing the test sets and when they should be applied is a
very complex task.
The quality of test sets is critical to the quality of a running
implementation.

