Mutation Testing

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

informatics

16 February 2010 Software Testing: Lecture 9

Overview

= Mutation testing is a structural testing method, i.e. we use the
structure of the code to guide the test process.
= We cover the following aspects of Mutation Testing:
- What is a mutation?
- What is mutation testing?
- When should we use mutation testing?
- Mutations
- Examples
- Mutation testing tools

16 February 2010 Software Testing: Lecture 9 2

What Is a mutation?

= A mutation is a small change in a program.

= Such small changes are intended to model low level defects that
arise in the process of coding systems.

= Ideally mutations should model low-level defect creation.

16 February 2010 Software Testing: Lecture 9 3

What is Mutation Testing?

= Mutation testing is a structural testing method aimed at
assessing/improving the adequacy of test suites, and estimating
the number of faults present in systems under test.

= The process, given program P and test suite T, is as follows:

- We systematically apply mutations to the program P to obtain a
sequence Py, P,,... P, of mutants of P. Each mutant is derived by
applying a single mutation operation to P.

- We run the test suite T on each of the mutants, T is said to kill
mutant PJ- if it detects an error.

- If we kill k out of n mutants the adequacy of T is measured by the
quotient k/n. T is mutation adequate if k=n.

= One of the benefits of the approach is that it can be almost
completely automated.

16 February 2010 Software Testing: Lecture 9 4

When should we use mutation testing?

= Structural test suites are directed at identifying defects in
the code. One goal of mutation testing is o assess or improve
the efficacy of test suites in discovering defects.

= When we are carrying out structural testing we are worried
about defects remaining in the code. Often we are keen to
measure the Residual Defect Density (RDD) in the program P
under test.

= The Residual Defect Density is usually measured in defects per
thousand lines of code.

= Advocates of mutation testing argue that it can provide us with
an estimate of the RDD of a program P that has satisfied all
the tests in a test suite T.

16 February 2010 Software Testing: Lecture 9 5

Using Mutation Testing to Estimate the RDD

= We want to estimate the RDD of Program P given that it has
satisfied all the tests in test suite T.

= We follow the procedure:

Suppose we have an estimate r of the RDD of programs produced
by our development process before they are subject to test (this
could be gathered using production data and field experience, or it
could be based on the number of faults our tests have already
detected).

Generate n mutants of the program P.
Test each mutant with the fest suite T.

Find the number, k, of mutants that are killed by T. To yield a non-
zero RDD we need to test enough mutants to ensure that O < k < n.

Use r.(n-k)/k as the estimate for the RDD of the tested program.
k/n is a measure of the adequacy of T in finding defects in P.

= Alfternative non-RDD-based approach in P&Y, p.322.

16 February 2010 Software Testing: Lecture 9

Assumptions

= The validity of this rests on many assumptions:

That mutations are a good model for defects.
That defects are usually independent

That the construction of T is not influenced by knowledge of the
mutation process (i.e. we don't use knowledge of the mutation
process to build tests that are better at finding defects generated
by mutations than normal defects).

If we are interested in making confident estimates of very low
RDDs we will need very large numbers of mutants.

For example, if our development process left us with 10 defects
per kLoc before test and we want to be confident our RDD after
test is lower that 0.1 per kLoC then we need to test many mutants
to be confident of such an RDD estimate.

16 February 2010 Software Testing: Lecture 9

An Approach to Mutation

= Ideally we need systematically to apply mutations to the
program under test. This would involve some criterion of
applicability.

= Usually we consider mutation operators in the form of rules
that match a context and create some systematic mutation of
the context to create a mutant.

= The simple approach to coverage is to consider all possible
mutants - but this may create a very large number of mutants
(in the case of estimating RDDs the value and confidence
required of the estimated RDD would control the number of
mutants to be generated).

= Mutation testing is best supported by tools because of the
potentially very large numbers of mutations to be generated
during testing.

16 February 2010 Software Testing: Lecture 9 8

Kinds of Mutation

= Value Mutations: these mutations involve changing the values
of constants or parameters (by adding or subtracting values
etc), e.g. loop bounds - being one out on the start or finish is a
very common error.

= Decision Mutations: this involves modifying conditions to
reflect potential slips and errors in the coding of conditions in
programs. E.g. a typical mutation might be replacing a> by a<in
a comparison.

= Statement Mutations: these might involve deleting certain
lines to reflect omissions in coding or swapping the order of
lines of code. There are other operations, e.g. changing
operations in arithmetic expressions. A typical omission might
be to omit the increment on some variable in a while loop.

= A wide range of mutation operators is possible...

16 February 2010 Software Testing: Lecture 9 9

Offutt’s Mutations for Inter-Class Testing

Language Feature | Operator Description
Access Control AMC Access modifier change
IHD Hiding variable deletion
IHI Hiding variable insertion
10D Overriding method deletion
Inheritance 10P overriding method calling position change
IOR Overriding method rename
ISK super keyword deletion
IPC Explicit call of a parent’s constructor deletion
PNC new method call with child class type
PMD Instance variable declaration with parent class type
Polymorphi=sm PPD Parameter variable declaration with child class type
PRV Reference assignment with other comparable type
OMR Overloading method contents change
Overloading OMD Overloading method deletion
OAO Argument order change
OAN Argument number change
JTD this keyword deletion
Java-Specific JSC static modifier change
Features JID Member variable initialization deletion
JDC Java~supported default constructor creation
EOA Reference assignment and content assignment replacement
Common EOC Reference comparison and content comparison replacement
Programming Mistakes EAM Accessor method change
EMM Modifier method change

16 February 2010 Software Testing: Lecture 9 10

Value Mutation

= Here we attempt to change values to reflect errors in reasoning
about programs.
= Typical examples are:

- Changing values to one larger or smaller (or similar for real
humbers).

- Swapping values in initialisations.
= The commonest approach is to change constants by one in an
attempt to generate a one-off error (particularly common in
accessing arrays).
= Coverage criterion:

- Here we might want to perturb all constants in the program or unit
at least once or twice.

16 February 2010 Software Testing: Lecture 9 11

Decision Mutation

= Here again we design the mutations to model failures in
reasoning about conditions in programs. As before this is a very
limited model of programming error - really modelling slips in
coding rather than a design error.

= Typical examples are:

- Modelling "one-of f" errors by changing < to <= or vice versa (this is
common in checking loop bounds).

- Modelling confusion about larger and smaller, so changing > to < or
vice versa.

- Getting parenthesisation wrong in logical expressions e.g. mistaking
precedence between && and ||

= Coverage Criterion:
- We might consider one mutation for each condition in the program.

- Alternatively we might consider mutating all relational operators
(and logical operators e.g. replacing || by && and vice versa)

16 February 2010 Software Testing: Lecture 9 12

Statement Mutation

= Here the goal is primarily fo model editing slips at the line level
- these typically arise when the developer is cutting and pasting
code. The result is usually omitted or duplicated code. In
general we might consider arbitrary deletions and permutations
of the code.

= Typical examples include:

- Deleting a line of code

- Duplicating a line of code

- Permuting the order of statements.
= Coverage Criterion:

- We might consider applying this procedure to each statement in
the program (or all blocks of code up to and including a given small
humber of lines).

16 February 2010 Software Testing: Lecture 9 13

Examples: Value Mutation

public int Segment (int t[], int 1, int u) {
// Assumes t is in ascending order, and l<u,
// counts the length of the segment
// of t with each element 1l<t[i]<u
int k =0

| Mutating to k=1 causes miscounting

i<t.length && t[il<u; i++) {

for (int i=
if(t[1i

} . o Here we might mutate the code to read i=1,
FELUEIRIT] a test that would kill this would have t
) length 1 and have | < t[0] < u, then the

program would fail to count t[0] and return
0 rather than 1 as a result

16 February 2010 Software Testing: Lecture 9 14

Examples: Decision Mutation

public int Segment (int t[], int 1, int u) {
// Assumes t is in ascending order, and l<u,
// counts the length of the segment
// of t with each element 1l<t[i]<u
int k = 0;

Mutating to t[i]>u will cause miscounting
N
for (int i=0; i<t.length && tl[il<u; i++) {
1f (£ [1]1>1)

K++;
}
}

return (k) ;

We can model “one-off”” errors in the loop bound by changing
this condition to i<=t.length - provided array bounds are
checked exactly this will provoke an error on every execution.

16 February 2010 Software Testing: Lecture 9 15

Examples: Statement Mutation

public int Segment (int t[], int 1, int u) {
// Assumes t is in ascending order, and l<u,
// counts the length of the segment
// of t with each element 1l<t[i]<u
int k = 0;

for (int i=0; i<t.length && tl[il<u; i++) {

1f(t[di]1>1) {
K++;
}
}

return (k

Here we might consider deleting this statement (then count
would be zero for all inputs, we might also duplicate this line in
which case all counts would be doubled.

16 February 2010 Software Testing: Lecture 9 16

Observations

= Mutations model low level errors in the mechanical production
process. Modelling design errors is much harder because they
involve large numbers of coordinated changes throughout the
program.

= Ensuring test sets satisfy coverage criteria are often enough to
ensure they kill mutants (because mutants often don't "make
sense” and so provoke a failure if they are ever executed).

= Black-box test sets are poorer at killing mutants - we'd expect
this because black-box tests are driven more by the operational
profile than by the need to cover statements.

= We could see mutation testing as a way of forcing more
diversity on the development of test sets if we use a black-box
approach as our primary test development approach.

16 February 2010 Software Testing: Lecture 9 17

Concepts from the literature

= Syntactic vs semantic size of a mutant - the size the source
change a mutant involves, versus the size of its effect on
program behaviour.
- It's been hypothesized that mutation operators which produce

semantically small faults are better (because semantically large
faults will be caught by most tests).

- Justification for elimination of certain types of mutation.
= Competent programmer hypothesis - the program under test is
“close 10" the correct program.

- So exploring the space of small mutations will lead us to that
program.
= Coupling effect hypothesis: tests for detecting simpler faults
will be sufficient also for detecting more complex faults.

- So even though many faults are a product of logical errors with
wide consequences in the code, small mutants will lead to
recognition of these faults.

16 February 2010 Software Testing: Lecture 9 18

Mutation Testing Tools

= There is a range of possible mutation tools. Recently Offutt
and others have created MuJava, a tool for creating Java
mutants.

o , Yu-Seung Mq,
Jeff Offutt and Yong-Rae Kwon. Journal of Software Testing,
Verification and Reliability, 15(2):97-133, June 2005.

= Their system is designed specifically to include a range of
mutation operators that target OO languages in particular.

= They incorporate an efficient version of generating a
“metamutant” that is capable of behaving like a// mutants of the
program (using Java reflection to instantiate operators at
execution time).

16 February 2010 Software Testing: Lecture 9 19

Mu- Java — Mutant Generation Interface

=] 3
e [T oot
z [2] Select nutation oneriors Lo aonk Tradtinnal Operator
B Push i] Operalor
[4] Vil swith enduramce. - @i i;gs
[AoR
(. : L = ¥l LR
[|Li=tjava = ¥ |RoR
el [k - [l o
] |ordapacheibeelisonsianis jaea g
| [|mrenapacheibesl ExceplionConstants jaus | None | all
| [|orgiepechebeel Rep o siondae
|] |orgispachetbeelveriien Graphicalerifiar avs Clges Dporator
[|orefapacheibeeluermenHatueyermer & -—I
O |orgiapachebeelverfien P assVeriier g || Operstor |
| Tel |ordtapacheibeelverifionTra nsimeHulliaa led HD
| T |areispacheibeelvermanmie e aianme 2 i s [fIH1
[|orehapachelbealietMerermer ja W 00
1 |ordlapacheibeelverfiorterfiero oF ame javs _@_J‘E
i | lorfiapachetbeelverdienterdierF s clorg | ava ¥ I0R
[|ercapecheibealvermernermert & orlisiote] 2 ¥ |isk
0 |orgtapacheibeslverfiareriierF s donesh s armer jwea .L_f.l_ IPL
| [#] |orchapacheibeslverfieriter flisl o jars Il [FHC
| [|orgiapacheibeelverdiensuiural SiC ontalF lowGraph jawa [|FHID
T |OngapaEh e e it e AR Rl DnHar g [el |PRO
11 |oretapacheibesl verfianstructural SiEx eptionHand lers. java el PR
T |onefiepacheibeelyerienshurralsiEeeu ormiaar [|CIMFE
| O [orgfapachetbealeronsiruersiSFrama jawa 1 3:'15
[|ordiapachebcelverdien strucuralsiZanencAmsy. 3 :
T |orhaparheibeellertieniLe 2 UneiC anstaintst T 2va [|QAM
orgapach e bealwermian S e SInstreland ot 3 i WD
'] |orgiapachetbeelverfiensiruclurzis'localariables java |,ﬂ HEG
| [|orenapacheibeelyermenstruciural SwperandSiz ckiavs lied T
T T e D e e R L A B I HOC
[] |ordhapacheibeelveriensiucirsl=150 b oubng | e led [ELS,
|_| I:Irg'lﬂFIEH'IElDEE|UJErmEn51TUETUr3|515UIJI'IZILIIJI"IE'E|i|.l"3 |ld EDi
| |ongspashebelvernen e sninitis e d o e e jra = IF"_ E’:_“r:—
Iﬂl |ﬁ R e | Narie: | Al

16 February 2010 Software Testing: Lecture 9 20

Mu-Java — Mutant Analysis Interface

Select a Class |5mu|c

~Sinsural Mutants

* Summany * hp 1 I MGE MOEAn Or=4) B (GE FUTERIL <=5
= 11 nurn=g;

{5 * wp !
m—[!,:'—lzl—l mp_i kH ifISE mutant D==4]|
HI 1 ", 33 super BetErml); BI5K_1
ol e 70 telze]
Iop 13 | bl'l:_! 35 super S2tEnl; fonginal code
BR 1 | K 3 38]
12k |3 FHC_1 a7 Systemiout pantin e
Eh?i: 'g PHC_2 EE IFIZE. Mutaht D==5]4
S| PHC_ 3 14 MU+, Mn3k_2
FED 1 PRY_1 b S
PR |7 FIW_Z a1 supernum++ dorlgingl code
OERE | T a3 b
amb 1 P 13 System.out pantin*2";
0AD 0 [ERRY S g 1
I S a5 jelzal fowginal code
j-ls-nc g PRY_f L num=g,
T oamE } PRY 7 ai superSeiEnw],
oE 1 OMR an Srvatem out printin
EDA D omMR 2 a0 SUREERLIFT
EOc 0 | 'mm_3 il System.aut pantin (427
EAM B

16 February 2010 Software Testing: Lecture 9 21

Mu-Java Test Execution Interface

= Hi=]E
Tost Exoculor

0 ERCAG Gk CHags milan s

Class : Stack -
{ Execide onby tradtional mootapds 00000000 —4—
TestCase :| StackTest - HuM
(0 Execoe Bath mutanis = z
op | #
ES 5d Traditional Mutants Result Class Mutants Fesult
i".’.:'_E...B_ LveMuanis®# 180 | Lhe Mutants £ oo
LER 4 Filled Mulaniz # | 41 Filled Mutants # | f
F!C'IR] Total Mnams & | 231 Total Mutsris# | 29
S MuaniSioe | 18.0% WUt BeoE | 31.0%
Tolal: 721 Live - follen Live
Top | # Lol 3 | ABS 1 o _1
HE 1 uoi_a ABS 2 on_?
:E::l : uol 5 AHS 16 0P 3
T Ll_fi ARS 37 PHC_1
R nBs_7 LI _B PNC_2
ISK 13 MRS _B [LI_30 PHC_3
gr.ifc_g__ Lol_o LiH_40 PRV _A
e L01_10 L0_41 PR 7
B wal_11 ROR_42 1 PRV.3
PRy ¥ w12 JROR_43 PRV A
EEH_ ARS_13 TROF_45 PHY 5
TR ABS_14 LCR_48 PHY &
[T L1 _15 LM _54 PRV_7
SR wol_16 L0153 {OMR_1
il?:\c 1'] uol_17 ROR,_55 OMF,_Z
oG T Lol 18 OR_&7 O3
ElA ROR_19 ROR_58 A4
EDE:D ROR_20 ABS_fil) H1_4
EAM 0 3
e ROR21 || ABS61 || PPD_1
Todal: 8

16 February 2010 Software Testing: Lecture 9 22

Summary

= Mutation testing can be a useful addition to the test process.

= It is laborious and really requires tool assistance if it is fo be
cost-effective.

= Improving Residual Defect Density estimates requires very
large numbers of mutants if we are to have confidence in the
results.

= Object Orientation has a wide range of structural and
operational mutants that are specific to objects.

m Tools like mu-Java use features of Java to enable the efficient
generation and ftest of mutants.

= Even with efficient tfechniques execution fimes can be very slow
for large numbers of mutants.

16 February 2010 Software Testing: Lecture 9 23

