Data Flow Coverage 1

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

informatics

2 February 2010 Software Testing: Lecture 7



Why Consider Data Flow?

= Control flow:
- Statement and branch coverage criteria are weak.

- Condition coverage and path coverage are more costly and can
become infeasible.

s Data Flow:

- Base the coverage criterion on how variables are defined and used
in the program.

- Coverage is based on the idea that in principle for each statement
in the program we should consider all possible ways of defining the
variables used in the statement.

= Data Flow Analysis arose in the study of compiling - as well as
suggesting coverage criteria it can also provide a means of
statically checking variables are defined before use.

2 February 2010 Software Testing: Lecture 7 2



Terminology

= We introduce some standard naming conventions:

P - code under fest.

G(P) - control flow graph of P, G(P) = (V,Es,f) (Vertices, Edges,
start node, finish node)

Path is a sequence of vertices: vy, vy, ... v, where for each i (1<i<n+1):
(vi4, v;) is a member of E.

X is a variable of P

If vis a vertex of the flow graph we define:

- defs(v): the set of all variables that are defined at v (i.e. are on the
LHS of an assignment or similar)

- undef(v): the set of all variables whose value is undefined after
executing the code corresponding to v.

* c-use(v): (c for computation) all variables that are used to define other
variables in the code corresponding to v

- p-use(v,Vv'): (p for predicate) all variables used in taking the (v,v')
branch out of vertex v.

* Vg, Vi, .. Vi IS a def-clear path for x, if x is not in defs(v;) for O<i<k

2 February 2010 Software Testing: Lecture 7



Example of a Def-Clear Path

X=3
y=4

<>x=6

S—
o

\4
\4

y=9

*A,D,E isdef-clear for x but not for y
*A,B,E isdef-clear for y but not for x

2 February 2010 Software Testing: Lecture 7 4



Refinement

= We call a c-use of x global, if it is not preceded by a definition
of x in the same basic block.

= We call adef of x global, if it is used in some other vertex in
the flow graph.

= We refine our definitions only to take account of global uses
and definitions (e.g. c-use(v) is the global c-uses in vertex v)

2 February 2010 Software Testing: Lecture 7 5



Definition and Use - Example

public int Segment (int t[], int 1, int u) {

// Assumes t is in ascending order, and 1 < u,

// counts the length of the segment
// of t with each element 1 < t[i] < u

int k = 0; =

Defn of k

for(int 1 =

0; 1 ength && t[i] < u; i++) {
if]f:t[i] > 1) {‘K b-use of i

}}\

c-use and definition of k

return ks
} \

c-use of k

2 February 2010 Software Testing: Lecture 7




Corresponding Flow Graph

t, 1, u defined
i=k=20

\ 4

return k k++

2 February 2010 Software Testing: Lecture 7 7



Data-flow Terminology

= decu(x,v) = {V in V| x is in c-use(V') and there is a def-clear path
for x from v to v'}

- This is the set of vertices with c-uses of x that can potentially be
influenced by the definition of x at v

= dpu(x,v) = {(V,v') in E| x is in p-use(v'v") and there is a def
clear path for x from v to (V' v")}

- This is the set of edges with p-uses of x that can potentially be
influenced by the definition of x at v.

2 February 2010 Software Testing: Lecture 7 8



Frankl and Weyuker’s data-flow coverage criteria

3

All-defs requires that for each definition of a variable x in P,
the set of paths TT executed by the test set T contains a def-
clear path from the definition to at least one c-use or one p-
use of x.

all definitions get used.

All-c-uses requires that for each definition of a variable x in P,
and each c-use of x reachable from the definition (see
definition of dcu(x,v)), TT contains a def-clear path from the
definition to the c-use.

all computations affected by each definition are exercised.

All-p-uses requires that for each definition of a variable x in P,
and each p-use of x reachable from the definition (see
definition of dpu(x,v)), TT contains a def-clear path from the
definition to the p-use.

all branches affected by each definition are exercised.

2 February 2010 Software Testing: Lecture 7



Frankl and Weyuker’s data-flow coverage criteria

4. All-c-uses/some-p-uses. for each definition of x in P at v:

B Tf dcu(x,v) is not empty, the paths TT executed by the test set T
contains a def-clear path from v to each member of dcu(x,v);

B otherwise, the paths TT executed by the test set T contains a def-
clear path from v to an edge in dpu(x,v).

all definitions get used, and if they affect computations then
all affected computations are exercised.
5 All-p-uses/some-c-uses: for each definition of x in P at v:

B If dpu(x,v) is not empty, the paths TT executed by the test set T
contains a def-clear path from v fo each edge in dpu(x,v):

B otherwise, the paths TT executed by the test set T contains a def-
clear path from v to a member of dcu(x,v).
=2 all definitions get used, and if they affect control flow then all
affected branches are exercised.

3

2 February 2010 Software Testing: Lecture 7 10



Frankl and Weyuker’s data-flow coverage criteria

6. All-usesrequires that for each definition of x at v in P, the set
of paths TT executed by the test set T contains a def-clear
path from v to both dcu(x,v) and dpu(x,v).

= every computation and branch directly affected by a definition
is exercised.

7. All-du-paths requires that for each definition of x at vinP, the
set of all paths TT executed by the test set T contains all def-
clear paths from v to both dcu(x,v) and dpu(x,v), such that each
path is loop free, or contains at most one loop of any loop on
the path.

= all-uses, but requires exercise of all def-use paths, modulo
looping.

8. All-paths requires that all paths through the program be
executed.

2 February 2010 Software Testing: Lecture 7 11



Flow Graph, Revisited

t, 1, u defined
i=k=20

\ 4

return k k++

2 February 2010 Software Testing: Lecture 7 12



What Is the point of all these distinctions?

2 February 2010 Software Testing: Lecture 7 13



Subsumption

= We say that test coverage criterion A subsumes test
coverage criterion B if and only if, for every program
P, every test set satisfying A with respect to P also
satisfies B with respect to P.

= i.e. if any test set satisfying criterion A will
(provably) always also satisfy B, then "A subsumes B".

= Example: branch coverage subsumes statement
coverage.

2 February 2010 Software Testing: Lecture 7 14



Subsumption relationships

All-paths

All-du-paths

Allluses

/

All-c-uses/Some p-uses All-p-uses/Some-c-uses
\All-der/
All-p

All-a-uses

-USes

ranch Coverage

Statement Coverage
2 February 2010 Software Testing: Lecture 7 15



Uses of Data Flow analysis

= We can use the analysis of definition and use to calculate
optimistic and pessimistic estimates of whether variables are
defined or not at particular vertices in the flow graph.

= We can use these to discover potential faults in the program.

= For example:

- If adefinition is only followed by definitions of the same variable -
is it useful?

- If we use a variable and it is not always preceded by a definition we
might use it when it is undefined.

2 February 2010 Software Testing: Lecture 7 16



Summary

= Data-flow coverage criteria are claimed to provide a better
measure of coverage than control flow because they track
dependencies between variables in the flow graph.

= Frankl and Weyuker have done some empirical work on this (see
references) and there is some justification for believing data-
flow coverage is a good approach to structural testing.

= There are the usual issues of the computability of the exact
relationships between definition and use but we are usually
satisfied with approximations.

2 February 2010 Software Testing: Lecture 7 17



= L. A Clarke, A. Podgurski, D. J. Richardson and Steven J. Zeil,
"A Formal Evaluation of Data Flow Path Selection Criteria,”

IEEE Transactions on Software Engineering, 15 (11), November
1989, pp. 1318-1332.

= Background reading

- "A Comparison of Data Flow Path Selection Criteria ," by Lori A.
Clarke et al.

- "A Comparison of Some Structural Testing Strategies ," by Simeon
Ntafos, IEEE Transactions on Software Engineering, v.16, No. 6,
1988

- S. Rapps and E. J. Weyuker, "Data Flow Analysis Techniques for
Test Data Selection," Sixth International Conference of Software
Engineering, Tokyo, Japan, September 1982, pp. 272-277.

2 February 2010 Software Testing: Lecture 7 18



