Testing in the Lifecycle

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

‘nformatics

19 January 2010 Software Testing: Lecture 3 1

Software was difficult to get right in 1982 g

— Software paid for
but not delivered

Software that could
be used after changes

~3%

Software used

but later reworked

or abandoned
19%

— Software delivered

Software thaf could but never used
47%

be used as delivered
~2%

Year 1982: Nine Contracts Totalling $6.8 Million

19 January 2010 Software Testing: Lecture 3 2

It was still difficult in 1995

3% 29%

46%
20%
2%
Figure 1: Findings of a 1995 Departasent of Defense Software Study
[software paid for, but not delivered - 2%

[} used, but ly reworked or - 20%
[0 Software used as delivered - 2%

O , but not ully used - 46%
[Software used after changes - 3%
Total Software Costs - 535.7 billion

19 January 2010 Software Testing: Lecture 3 3

... and in 2007 ;

o

Success rate of government IT projects and programmes

B On budget, on
time, on spec
H Anything in
between
™ O Never saw the
a0 light of day

Source: The Guardian, 18 May 2007
Figures from Department for Work and Pensions spokesman (63%)
And Joe Harley, Chief Information Officer, DWP (30%)

19 January 2010 Software Testing: Lecture 3 4

And testing costs are significant

[Gallant, 1999] (and Winokur, 19982)

19 January 2010 Software Testing: Lecture 3 5

Cost of Testing vs Cost of Defects @

= NIST report (2002): “The Economic Impacts of Inadequate
Infrastructure for Software Testing"

= Notes that "developers already spend approximately 80% of
software development costs on identifying and correcting
defects”.

= "Identifying and correcting defects” not necessarily the same
thing as the cost of testing, but still...

19 January 2010 Software Testing: Lecture 3 6

o

Costs of fixing defects found at different stages

)

Costs of Defects

= Defects in the specification are even more costly to remove if
we don't eliminate them early.
. = Different software lifecycles distribute testing (verification -
“building the thing right" and validation - “building the right
H % Dofects thing") differently.
E ntrodLiced = The different distributions of test activity can have an impact
i in i pheee .
: [5 Peies on where bugs are discovered.
2 tr:::r::se = We consider three representative lifecycles and consider
i ¢ Coutt where testing is located in each:
repad defect - The V-model
in ths phase
- Boehm'’s spiral model
i - eXtreme Programming (“XP")
Coding init Fumnrtion Fieded PFost
Test Test Teat Malnaze
Sourre: Applied Soffwars Measursment, Capers Jones, 1995
19 January 2010 Software Testing: Lecture 3 7 19 January 2010 Software Testing: Lecture 3 8
s 5
Recap: “waterfall” model of software development @ V-model

1. Requirements
2. Design

3. Implementation

4. Testing

5. Release and maintenance

= Sequential, no feedback

= Ironically its "author”, Royce, presented it as
an example of a broken model

19 January 2010 Software Testing: Lecture 3 9

less detail

mor e detail

4

< > <
< - > < -
19 January 2010build system Software Testing: Lecture Balidate system 10

< e

V-model Rationale E

i

= This is a modified version of the waterfall model.

= Tests are created at the point the activity they validate is
being carried out.

= So, for example, the acceptance test is created when the
systems analysis is carried out.

= Failure to meet the test requires a further iteration beginning
with the activity that has failed the validation.

=V model is focused on creating tests in a structured manner.

= It is popular with developers of systems that are highly
regulated because it is well suited to creating evidence that can
be used to justify a system to a regulator.

19 January 2010 Software Testing: Lecture 3 1

Boehm’s Spiral Model i 3

EVALUATE ALTERNATIVES
AND RISKS

DETERMINE GOALS,
ALTERNATIVES,
CONSTRAINTS

O
consta™ Risk analysis

Consant® 2 Risk analysis ;

@\\“* S,
/ e o, Riskanalysis] Proto- \ Proto-
et Yy
Budget, [muiger, /Budget, /guager, hes < Prootpe o, | ope, \
fie-cycle plan operation design

o

eveyy "

%:"’t‘m W\\aa‘:me@s Code.

et

Implementation Acceptance test
BEAN DEVELOP AND TEST

19 January 2010 Software Testing: Lecture 3 12

e,

Spiral Model Rationale 3

= The spiral model is focused on controlling project risk and
attempting formally to address project risk throughout the
lifecycle.

= V&V activity is spread through the lifecycle with more explicit
validation of the preliminary specification and the early stages
of design. The goal here is fo subject the early stages of
design to V&V activity.

= At the early stages there may be no code available so we are
working with models of the system and environment and
verifying that the model exhibits the required behaviours.

19 January 2010 Software Testing: Lecture 3 13

XP principles

= eXtreme Programming
advocates working directly with
code almost all the time.

= The 12 principles of XP
summarise the approach.

= Development is test-driven .

= Tests play a central role in
refactoring activity.

= “Agile" development mantra:
Embrace Change.

19 January 2010

OV ® NSO AW N e

I

Test-driven development
The planning game
On-site customer

Pair programming
Continuous integration
Refactoring

Small releases

Simple design

System metaphor
Collective code ownership
Coding standards
40-hour work week

Software Testing: Lecture 3

Extreme programming (XP)

[Kent Beck 1999]

ot 205 - Wl Tl

19 January 2010

Software Testing: Lecture 3 15

Summary

= We have considered three different approaches to the

19 January 2010

lifecycle and have seen how testing fits in the lifecycles.

Each approach will have a different testing cost and cost-
profile through the lifecycle.

Lifecycles are often dependent on the type of product and how
well we understand project risk.

Software Testing: Lecture 3

