
University of Edinburgh, School of Informatics

Informatics 3: Software Testing: Tutorial 6

Mutation Testing
Consider the following program:

public int Segment(int t[], int l, int u){

 // Assumes t is in ascending order, and l<u,
 // counts the length of the segment
 // of t with each element l<t[i]<u

 int k = 0;

 for(int i=0; i<t.length && t[i]<u; i++){

 if(t[i]>l){k++;}

 }
 return(k);
}

This is not a particularly good example of programming but it is useful for the
purposes of this tutorial.

Prerequisites
Review the material on Mutation testing in Lecture 9 and the papers by Offut
et al included in the schedule.

Preparation
Review the code above; please try to ensure you understand the method and
the implementation. The program assumes the array t is in ascending order
and given two integers l and u it finds the length k of the sequence t[j],t[j+1],
… t[j+k-1] with:

((j = 0 or t[j-1] <= l) and l < t[j]) and
((t[j+k-1] < u) and (j+k=t.length or u <= t[j+k])

so k is the length of the longest subsequence of t with all elements greater
then l and smaller than u.

Depending on the size of the tutorial group split into two three or four groups.

Activities
1. (10 Minutes) In your groups, construct a test suite for this method. Each

test case in the suite needs to specify the size of t, the values of the
elements of t, the values l and u, and the expected result of the test.
Write your test suite down on a separate sheet of paper. Use a simple
coverage criterion to judge the adequacy of you test suite. You might
just want to use statement coverage. The choice is yours.

2. (10 Minutes) In your groups, construct three or four mutants of the
above program. Each mutant should be derived from the original
program using one application of one of the following rules (I.e. each
mutant contains only one mutation):

a. Changing constants: a constant c in the program may be replaced
by c+1 or c-1.

b. One-off in relations: < may be replaced by <= and vice versa; >
may be replaced by >= and vice versa.

c. Inverted relations: < or <= may be replaced by > or >= and vice
versa.

d. Duplicate statements: any statement s; can be replaced by s;s;
e. Deleted statements: you may delete any statement.

3. (15 Minutes) Pass your test suite to a neighbouring group. With the test
suite you have just received: for each of your mutants work out
whether or not it is killed by the test suite.

4. (10 Minutes) If there is at least one mutant which is not killed in at
least one of the groups do the following:

a. Get the tutor to write the unkilled mutants on the board.
b. In your groups check if any of the mutants on the board is killed

by the test set you used in part 3.
c. Remove any mutant that is killed by at least one test suite.
d. If the board is empty of mutants go to stage 5, otherwise go to

stage 6.
5. (10 Minutes) If there are no mutants which are unkilled by all the test

suites so the following:
a. Get the tutor to write the test suites on the board.
b. In your groups, attempt to create a mutant that is not killed by

any of the test suites on the board.
c. If you can create such a mutant write it on the board. If you

cannot create such a mutant try to invent other mutation rules
that let you create such a mutant.

6. (10 Minutes) To get here you must have a mutant on the board that has
evaded death by test suite. In groups, try to strengthen your test suite
until it kills the mutant on the board. Write the strengthened test suites
on the board.

7. If there is time discuss how effective you think Mutation testing is in
strengthening test suites.

