
1

1Software Testing: Lecture 76 February 2009

Data Flow Coverage 1

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

6 February 2009 Software Testing: Lecture 7 2

Why Consider Data Flow?

Control flow:
– Statement and branch coverage criteria are weak.
– Condition coverage and path coverage are more costly and can

become infeasible.
Data Flow:
– Base the coverage criterion on how variables are defined and used

in the program.
– Coverage is based on the idea that in principle for each statement

in the program we should consider all possible ways of defining the
variables used in the statement.

Data Flow Analysis arose in the study of compiling – as well as
suggesting coverage criteria it can also provide a means of
statically checking variables are defined before use.

6 February 2009 Software Testing: Lecture 7 3

Terminology

We introduce some standard naming conventions:
– P – code under test.
– G(P) – control flow graph of P, G(P) = (V,E,s,f) (Vertices, Edges,

start node, finish node)
– Path is a sequence of vertices: v0, v1, … vk where for each i (1<i<n+1):

(vi-1, vi) is a member of E.
– x is a variable of P
– If v is a vertex of the flow graph we define:

• defs(v): the set of all variables that are defined at v (i.e. are on the
LHS of an assignment or similar)

• undef(v): the set of all variables whose value is undefined after
executing the code corresponding to v.

• c-use(v): (c for computation) all variables that are used to define other
variables in the code corresponding to v

• p-use(v,v’): (p for predicate) all variables used in taking the (v,v’)
branch out of vertex v.

• v0, v1, … vk is a def-clear path for x, if x is not in defs(vi) for 0<i<k

6 February 2009 Software Testing: Lecture 7 4

Example of a Def-Clear Path

x = 3
y = 4

A

D

B

E

C

x = 6

y = 9
•A,D,E is def-clear for x but not for y
•A,B,E is def-clear for y but not for x

6 February 2009 Software Testing: Lecture 7 5

Refinement

We call a c-use of x global, if it is not preceded by a definition
of x in the same basic block.
We call a def of x global, if it is used in some other vertex in
the flow graph.
We refine our definitions only to take account of global uses
and definitions (e.g. c-use(v) is the global c-uses in vertex v)

6 February 2009 Software Testing: Lecture 7 6

c-use of k

Definition and Use - Example

public int Segment(int t[], int l, int u) {
// Assumes t is in ascending order, and l < u,
// counts the length of the segment
// of t with each element l < t[i] < u
int k = 0;

for(int i = 0; i < t.length && t[i] < u; i++) {
if(t[i] > l) {

k++;
}

}

return k;
}

Defn of k

c-use and definition of k

p-use of i

2

6 February 2009 Software Testing: Lecture 7 7

Corresponding Flow Graph

i++

k++return

Params
init

6 February 2009 Software Testing: Lecture 7 8

Data-flow Terminology

dcu(x,v) = {v’ in V| x is in c-use(v’) and there is a def-clear path
for x from v to v’}
– This is the set of vertices with c-uses of x that can potentially be

influenced by the definition of x at v
dpu(x,v) = {(v’,v’’) in E| x is in p-use(v’,v’’) and there is a def
clear path for x from v to (v’,v’’)}
– This is the set of edges with p-uses of x that can potentially be

influenced by the definition of x at v.

6 February 2009 Software Testing: Lecture 7 9

Frankl and Weyuker’s data-flow coverage criteria

1. All-defs requires that for each definition of a variable x in P,
the set of paths Π executed by the test set T contains a def-
clear path from the definition to at least one c-use or one p-
use of x.
all definitions get used.

2. All-c-uses requires that for each definition of a variable x in P,
and each c-use of x reachable from the definition (see
definition of dcu(x,v)), Π contains a def-clear path from the
definition to the c-use.
all computations affected by each definition are exercised.

3. All-p-uses requires that for each definition of a variable x in P,
and each p-use of x reachable from the definition (see
definition of dpu(x,v)), Π contains a def-clear path from the
definition to the p-use.
all branches affected by each definition are exercised.

6 February 2009 Software Testing: Lecture 7 10

Frankl and Weyuker’s data-flow coverage criteria

4. All-c-uses/some-p-uses: for each definition of x in P at v:
If dcu(x,v) is not empty, the paths Π executed by the test set T
contains a def-clear path from v to each member of dcu(x,v);
otherwise, the paths Π executed by the test set T contains a def-
clear path from v to an edge in dpu(x,v).

all definitions get used, and if they affect computations then
all affected computations are exercised.

5. All-p-uses/some-c-uses: for each definition of x in P at v:
If dpu(x,v) is not empty, the paths Π executed by the test set T
contains a def-clear path from v to each edge in dpu(x,v);
otherwise, the paths Π executed by the test set T contains a def-
clear path from v to a member of dcu(x,v).

all definitions get used, and if they affect control flow then all
affected branches are exercised.

6 February 2009 Software Testing: Lecture 7 11

Frankl and Weyuker’s data-flow coverage criteria

6. All-uses requires that for each definition of x at v in P, the set
of paths Π executed by the test set T contains a def-clear
path from v to both dcu(x,v) and dpu(x,v).
every computation and branch directly affected by a definition
is exercised.

7. All-du-paths requires that for each definition of x at v in P, the
set of all paths Π executed by the test set T contains all def-
clear paths from v to both dcu(x,v) and dpu(x,v), such that each
path is loop free, or contains at most one loop of any loop on
the path.
all-uses, but requires exercise of all def-use paths, modulo
looping.

8. All-paths requires that all paths through the program be
executed.

6 February 2009 Software Testing: Lecture 7 12

What is the point of all these distinctions?

3

6 February 2009 Software Testing: Lecture 7 13

Subsumption relationships

All-paths

All-du-paths

All-uses

All-c-uses/Some p-uses All-p-uses/Some-c-uses

All-defs
All-p-uses

All-c-uses

Branch Coverage

Statement Coverage

Computation errors

Domain errors (wrong path)

6 February 2009 Software Testing: Lecture 7 14

Uses of Data Flow analysis

We can use the analysis of definition and use to calculate
optimistic and pessimistic estimates of whether variables are
defined or not at particular vertices in the flow graph.
We can use these to discover potential faults in the program.
For example:
– If a definition is only followed by definitions of the same variable –

is it useful?
– If we use a variable and it is not always preceded by a definition we

might use it when it is undefined.

6 February 2009 Software Testing: Lecture 7 15

Summary

Data-flow coverage criteria are claimed to provide a better
measure of coverage than control flow because they track
dependencies between variables in the flow graph.
Frankl and Weyuker have done some empirical work on this (see
references) and there is some justification for believing data-
flow coverage is a good approach to structural testing.
There are the usual issues of the computability of the exact
relationships between definition and use but we are usually
satisfied with approximations.

6 February 2009 Software Testing: Lecture 7 16

References for Coverage (available from Web page)

L. A. Clarke, A. Podgurski, D. J. Richardson and Steven J. Zeil,
"A Formal Evaluation of Data Flow Path Selection Criteria,”
IEEE Transactions on Software Engineering, 15 (11), November
1989, pp. 1318-1332.
Background reading
– "A Comparison of Data Flow Path Selection Criteria ," by Lori A.

Clarke et al.
– "A Comparison of Some Structural Testing Strategies ," by Simeon

Ntafos, IEEE Transactions on Software Engineering, v.16, No. 6,
1988

– S. Rapps and E. J. Weyuker, "Data Flow Analysis Techniques for
Test Data Selection," Sixth International Conference of Software
Engineering, Tokyo, Japan, September 1982, pp. 272-277.

