Structural Testing 1

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

‘nformatics

3 February 2009 Software Testing: Lecture 6

Summary

When we write unit tests we consider:
1. Specification-based tests using specifications or models
2. Checklists of commonly occurring errors
3. Structural Testing

3 February 2009 Software Testing: Lecture 6

Common Errors

= Can be from a particular programming community.

= Well-instrumented organisations monitor and summarise error
occurrences.

= Professional good practice should make you sensitive to the
errors you make personally.

= The following are the "top three" from David Reilly's top ten
Java programming errors (linked from the practical).

= Use this as a checklist when you are looking to test systems -
attempt to provoke errors in these classes. (e.g. number 4 in
the “top fen" is that Java's arrays start at O!)

=
3. Concurrent access to shared variables by threads'@

public class MyCounter {
private int count = 0; // count starts at zero

public void incCount(int amount) {
count = count + amount;

}

public int getCount() {
return count;

MyCounter c;
// Thread 2
c.incCount(l);

// Thread 1
c.incCount(l);
// join
c.getCount() == 7

g

3 February 2009 Software Testing: Lecture 6 3 February 2009 Software Testing: Lecture 6 4
- '__
3. Concurrent access to shared variables by threads 2. Capitalization Errors E 3
= Remember:
public class MyCounter { - All methods and member variables in the Java API begin with
private int count = 0; // count starts at zero lowercase letters.
- All methods and member variables use capitalization where a new
public synchronized void incCount(int amount) { word begins e.g - getDoubleValue().
count = count + amount;
}
public int getCount() {
return count;
b
}
Even more important with shared external resources...
3 February 2009 Software Testing: Lecture 6 3 February 2009 Software Testing: Lecture 6 6

1. Null pointers

public static void main(String args[]) {
String[] list = new String[3]; // Accept up to 3 parameters
int index = 0;

while((index < args.length) && (index < 3)) {
list[index] = args[index];
index++;

// Check all the parameters
for(int i = 0; i < list.length; i++) {
if(list[i].equals('-help™)) {
/.

} else if(list[i].equals("-cp™)) {
V7
// [else 1

}

3 February 2009 Software Testing: Lecture 6 7

Structural Testing

Testing that is based on the structure of the program.
Usually better for finding defects than for exploring the
behaviour of the system.
= Fundamental idea is that of “basic block” and flow graph - most
work is defined in those terms.
= Two main approaches:
- Control oriented: how much of the control aspect of the code has
been explored?
- Data oriented: how much of the definition/use relationship
between data elements has been explored.
= See figures 12.1 and 12.2 of Pezzé and Young for an example of
some code and its corresponding control flow graph.
= The code has null pointer errors.

3 February 2009 Software Testing: Lecture 6 8

s 5

Basic Blocks @
= A basic block has at most one entry point and usually at most

two exit points.

= Can you think of exceptions to this?

= We decompose our program into basic blocks. These are the

nodes of the control graph.
= The edges of the control graph indicate control flow - possibly

under some conditions.

3 February 2009 Software Testing: Lecture 6 9

Code and Control Flow Graph Example

nt cgi_decode(char *encoded, char *decoded) {
char *eptr = encoded;
char *dptr = decoded;

1t ok=0;
(reptr) {

rc

maps to blank */
{

/
' Bad return code */

ok
} else {
dptr = 16 digit_high + digit_low;

/* Case 3: Al other chars map to themselves */
3 else {
*dptr = *eptr;

by
+edptr;

+reptr;

P&Y p.213-214, Figures 12.1 & 12.2

3
dptr = "\0"; / Null terminator for string */
return ok;

3 February 2009 Software Testing: Lecture 6 10

< e

Some tests for the cgi program

= To={" "fest", “test+case%1Dadequacy"}
™, “test", “test case adequacy”
= T, = {"adequate+test%0ODexecution’%7U"}
- ->"adequate test<CR>execution "
= T,={"%3D", "%A", "a+b", “test"}
- =>"=",2,%ab", "test"
s Ty={"" "+%0D+%4J"}
- > %CRY 0"
= T, = {"first+test%9Ktest%K9"}
- ->“first testotesto"”

- >

3 February 2009 Software Testing: Lecture 6 1

Statement Testing :

= Statement Adequacy: all statements have been executed by at
least one test.

= Statement Coverage: for a particular test T, this is the
quotient of the number of statements executed during a run of
T (not counting repeats) and the number of statements in the
program.

= The test set T is adequate if the Statement Coverage is 1.

= For our sample tests: TO omits ok = 1 at line 34, T1 executes all
the code as does T2.

= Ingeneral we do not know if statement coverage is achievable -
why?

= All of this can be rephrased in terms of basic blocks - and we
look at node coverage in the control-flow graph.

= Statement coverage is a basic measure but is a fairly poor test
of how well we have exercised the code.

3 February 2009 Software Testing: Lecture 6 12

Statement Coverage - Example

3 February 2009 Software Testing: Lecture 6

Branch Coverage

= Statement Coverage gives fairly poor coverage of the flow of
control in systems.
= For example, we can only guarantee to consider arriving at some
basic block from one of its predecessors.
= Branch adequacy attempts to resolve that:
- Let T be a test suite for a program P. T satisfies the branch
adegquacy criterionif for each branch B of P there exists at least
one test case that exercises B.
= The branch coverage for a test suite is the ratio of branches
tested by the suite and the number of branches in the program
under test.
= As usual it is undecidable whether there exists a test suite
satisfying the branch adequacy criterion.

3 February 2009 Software Testing: Lecture 6

Branch Coverage — Example

3 February 2009 Software Testing: Lecture 6

Condition Coverage

= There are issues concerning the adequacy of branch coverage in
environments where we allow compound conditions (because we
might take a particular branch for different reasons).
= This is exacerbated when we have "shortcut conditions” that do
not evaluate some of the condition code.
= We frame this in ferms of “basic conditions” i.e. comparisons,
basic properties etc.
= The basic condition adequacy criterion is:
- Let T be a test suite for program P. T covers all the basic
conditions of P iff each basic condition of P evaluates to true under
some test in T and evaluates to fa/se under some test in T.
= Possible to extend to a “compound” condition adequacy where all
boolean subformulae in conditions evaluate to both true and
false.

3 February 2009 Software Testing: Lecture 6

Condition Coverage — Example

3 February 2009

Software Testing: Lecture 6

Compound Condition Coverage i

ad&bd&dcédddde (((@llb)&&c) |l d) &&e

Test Case a b c €
(1) | True | True | True True
2) | True | True | True True
(3) | True | True | True False
4) | True | True | False False
) | True | False | —
(6) | False | - - True
True
False
False
False
Finally, MC/DC: (12) | False | True | False
Modified Condition/Decision Coverage, 1 | False | False

aka Modified Condition Adequacy Criterion:
= Satisfiable with N + 1 test cases (N variables).
=Good compromise, required in aviation quality standards.

3 February 2009 Software Testing: Lecture 6

e

o

Path Coverage

= Condition coverage still gives us a poor coverage of historical
executions of the system.
= Path coverage is better:

- Let T be a test suite for program P. T satisfies the path adequacy
criterion for P iff for each path p of P there exists at least one
testcase in T that causes the execution of p.

= Infeasible for all but trivial programs.
= Coverage notion is the ratio of covered paths to total number
of paths - tends to zero for programs with unbounded loops.

- Why?

= Approach is to consider "unrolling” the code finitely
= Loop boundary coverage, each loop is executed:

- Zero times

- Once

- More than once

Path Coverage — Example

i<n && A[i]l<
false CERE

false

Ali]=-A[i]

return (1)

v

3 February 2009 Software Testing: Lecture 6 19 3 February 2009 Software Testing: Lecture 6 20
i 5

Summary — Subsumption Relations @

F

3 Patr ity

&

3

g (oo g) (Goromos csoson was)

F T

2 | |

& (Loop boundary hesten) (MCOC testng)

1. o |

¢ [teiiey) (W ommain)

Comm) o)

Py p23L
E—— Figure 12.8

3 February 2009 Software Testing: Lecture 6 21

