
Software Testing: Lecture 6 13 February 2009

Structural Testing 1

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

3 February 2009 2Software Testing: Lecture 6

Summary

When we write unit tests we consider:
1. Specification-based tests using specifications or models
2. Checklists of commonly occurring errors
3. Structural Testing

3 February 2009 3Software Testing: Lecture 6

Common Errors

Can be from a particular programming community.
Well-instrumented organisations monitor and summarise error
occurrences.
Professional good practice should make you sensitive to the
errors you make personally.
The following are the “top three” from David Reilly’s top ten
Java programming errors (linked from the practical).
Use this as a checklist when you are looking to test systems –
attempt to provoke errors in these classes. (e.g. number 4 in
the “top ten” is that Java’s arrays start at 0!)

3 February 2009 4Software Testing: Lecture 6

3. Concurrent access to shared variables by threads

public class MyCounter {
private int count = 0; // count starts at zero

public void incCount(int amount) {
count = count + amount;

}

public int getCount() {
return count;

}
}
…

MyCounter c;
// Thread 1 // Thread 2
c.incCount(1); c.incCount(1);

// join
c.getCount() == ?

3 February 2009 5Software Testing: Lecture 6

3. Concurrent access to shared variables by threads

public class MyCounter {
private int count = 0; // count starts at zero

public synchronized void incCount(int amount) {
count = count + amount;

}

public int getCount() {
return count;

}
}

Even more important with shared external resources…

3 February 2009 6Software Testing: Lecture 6

2. Capitalization Errors

Remember:
– All methods and member variables in the Java API begin with

lowercase letters.
– All methods and member variables use capitalization where a new

word begins e.g - getDoubleValue().

3 February 2009 7Software Testing: Lecture 6

1. Null pointers

public static void main(String args[]) {
String[] list = new String[3]; // Accept up to 3 parameters
int index = 0;

while((index < args.length) && (index < 3)) {
list[index] = args[index];
index++;

}

// Check all the parameters
for(int i = 0; i < list.length; i++) {

if(list[i].equals("-help")) {
//

} else if(list[i].equals("-cp")) {
//

}
// [else]

}
}

3 February 2009 8Software Testing: Lecture 6

Structural Testing

Testing that is based on the structure of the program.
Usually better for finding defects than for exploring the
behaviour of the system.
Fundamental idea is that of “basic block” and flow graph – most
work is defined in those terms.
Two main approaches:
– Control oriented: how much of the control aspect of the code has

been explored?
– Data oriented: how much of the definition/use relationship

between data elements has been explored.
See figures 12.1 and 12.2 of Pezzè and Young for an example of
some code and its corresponding control flow graph.
The code has null pointer errors.

3 February 2009 9Software Testing: Lecture 6

Basic Blocks

A basic block has at most one entry point and usually at most
two exit points.
– Can you think of exceptions to this?

We decompose our program into basic blocks. These are the
nodes of the control graph.
The edges of the control graph indicate control flow – possibly
under some conditions.

3 February 2009 10Software Testing: Lecture 6

Code and Control Flow Graph Example

-17: int cgi_decode(char *encoded, char *decoded) {
-18: char *eptr = encoded;
-19: char *dptr = decoded;
*20: int ok=0;
*21: while (*eptr) {
-22: char c;
*23: c = *eptr;
-24: /* Case 1: '+' maps to blank */
*25: if (c == '+') {
*26: *dptr = ' ';
*27: } else if (c == '%') {
-28: /* Case 2: '%xx' is hex for character xx */
-29:
30: int digit_high = Hex_Values[(++eptr)];
31: int digit_low = Hex_Values[(++eptr)];
*32: if (digit_high == -1 || digit_low == -1) {
-33: /* *dptr='?'; */
34: ok=1; / Bad return code */
-35: } else {
*36: *dptr = 16* digit_high + digit_low;
-37: }
-38:
-39: /* Case 3: All other chars map to themselves */
*40: } else {
*41: *dptr = *eptr;
-42: }
*43: ++dptr;
*44: ++eptr;
-45: }
*46: *dptr = '\0'; /* Null terminator for string */
*47: return ok;
-48: }

P&Y p.213-214, Figures 12.1 & 12.2

3 February 2009 11Software Testing: Lecture 6

Some tests for the cgi program

T0 = { “”, “test”, “test+case%1Dadequacy”}
– -> “”, “test”, “test case□adequacy”

T1 = {“adequate+test%0Dexecution%7U”}
– -> “adequate test<CR>execution□”

T2 = {“%3D”, “%A”, “a+b”, “test”}
– -> “=”, ?, “a b”, “test”

T3 = { “ ”, “+%0D+%4J”}
– -> “ ”, “<CR> □”

T4 = {“first+test%9Ktest%K9”}
– -> “first test□test□”

3 February 2009 12Software Testing: Lecture 6

Statement Testing

Statement Adequacy: all statements have been executed by at
least one test.
Statement Coverage: for a particular test T, this is the
quotient of the number of statements executed during a run of
T (not counting repeats) and the number of statements in the
program.
The test set T is adequate if the Statement Coverage is 1.
For our sample tests: T0 omits ok = 1 at line 34, T1 executes all
the code as does T2.
In general we do not know if statement coverage is achievable –
why?
All of this can be rephrased in terms of basic blocks – and we
look at node coverage in the control-flow graph.
Statement coverage is a basic measure but is a fairly poor test
of how well we have exercised the code.

3 February 2009 13Software Testing: Lecture 6

Statement Coverage - Example

A[i]<0

i++

A[i]=-A[i]

i<n && A[i]<X

return(1)

i=0

false true

true
false

3 February 2009 14Software Testing: Lecture 6

Branch Coverage

Statement Coverage gives fairly poor coverage of the flow of
control in systems.
For example, we can only guarantee to consider arriving at some
basic block from one of its predecessors.
Branch adequacy attempts to resolve that:
– Let T be a test suite for a program P. T satisfies the branch

adequacy criterion if for each branch B of P there exists at least
one test case that exercises B.

The branch coverage for a test suite is the ratio of branches
tested by the suite and the number of branches in the program
under test.
As usual it is undecidable whether there exists a test suite
satisfying the branch adequacy criterion.

3 February 2009 15Software Testing: Lecture 6

Branch Coverage – Example

A[i]<0

i++

A[i]=-A[i]

i<n && A[i]<X

return(1)

i=0

false true

true
false

3 February 2009 16Software Testing: Lecture 6

Condition Coverage

There are issues concerning the adequacy of branch coverage in
environments where we allow compound conditions (because we
might take a particular branch for different reasons).
This is exacerbated when we have “shortcut conditions” that do
not evaluate some of the condition code.
We frame this in terms of “basic conditions” i.e. comparisons,
basic properties etc.
The basic condition adequacy criterion is:
– Let T be a test suite for program P. T covers all the basic

conditions of P iff each basic condition of P evaluates to true under
some test in T and evaluates to false under some test in T.

Possible to extend to a “compound” condition adequacy where all
boolean subformulae in conditions evaluate to both true and
false.

3 February 2009 17Software Testing: Lecture 6

Condition Coverage – Example

A[i]<0

i++

A[i]=-A[i]

i<n && A[i]<X

return(1)

i=0

false true

true
false

3 February 2009 18Software Testing: Lecture 6

Compound Condition Coverage

a && b && c && d && e (((a || b) && c) || d) && e

P&Y p.221

Finally, MC/DC:
Modified Condition/Decision Coverage,
aka Modified Condition Adequacy Criterion:
▪Satisfiable with N + 1 test cases (N variables).
▪Good compromise, required in aviation quality standards.

3 February 2009 19Software Testing: Lecture 6

Path Coverage

Condition coverage still gives us a poor coverage of historical
executions of the system.
Path coverage is better:
– Let T be a test suite for program P. T satisfies the path adequacy

criterion for P iff for each path p of P there exists at least one
testcase in T that causes the execution of p.

Infeasible for all but trivial programs.
Coverage notion is the ratio of covered paths to total number
of paths – tends to zero for programs with unbounded loops.
– Why?

Approach is to consider “unrolling” the code finitely
Loop boundary coverage, each loop is executed:
– Zero times
– Once
– More than once

3 February 2009 20Software Testing: Lecture 6

Path Coverage – Example

A[i]<0

i++

A[i]=-A[i]

i<n && A[i]<X

return(1)

i=0

false true

true
false

3 February 2009 21Software Testing: Lecture 6

Summary – Subsumption Relations

P&Y p.231,
Figure 12.8

