
Software Testing: Lecture 5 130 January 2009

Specification-based Testing 2

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

30 January 2009 2Software Testing: Lecture 5

Overview

We consider issues in the generation of test cases – in
particular defining coverage criteria that reduce the
combinatorial complexity of test case generation.
We then go on to consider model-based black-box testing where
we have some model of the system and use that to decide how
to exercise the sysem. Typical examples of models include:
– Decision trees/graphs
– Workflows
– Finite State Machines
– Grammars

All of these models provide some kind of abstraction of the
system’s behaviour – we can use this both to explore the
system’s behaviour and check that it agrees with the
abstraction.

30 January 2009 3Software Testing: Lecture 5

Reducing the number of testcases

P&Y p.190:
Table 11.3

30 January 2009 4Software Testing: Lecture 5

Coverage Criterion

If our tests just took a simple approach to exhaustive testing
inputs drawn from Display Mode, Fonts, and Screen Size we
would need to consider 27 test cases.
With large numbers of categories this becomes prohibitive (e.g.
n categories each of size k has kn possible cases.
We can reduce this by just requiring that the input set cover all
possible m-tuples of each subset of m variables drawn from n.
For example in the case above we might require that we just
ensure all pairs of (Display Mode, Fonts), (Fonts, Screen Size)
and (Display Mode, Screen Size) are covered in the test set.
The next slide demonstrates this reduces the test set from 27
combinations to 9.

30 January 2009 5Software Testing: Lecture 5

Ensuring all Pairs are Covered

P&Y p.191:
Table 11.4

30 January 2009 6Software Testing: Lecture 5

Summary

Generally enumerating all possible combinations is exhaustive
but probably infeasible given cost constraints.
Alternative is to choose some systematic way of reducing the
space.
In this case we chose to find all pairs.
Other criteria are possible – see the reading.

30 January 2009 7Software Testing: Lecture 5

Model-based Testing

P&Y p.169:
Figure 10.3

30 January 2009 8Software Testing: Lecture 5

Models

Models typically provide some abstract representation of the
behaviour of the system.
Typical notations are:
– Algebraic Specifications
– Control/Data Flow Graphs
– Logic-based specification
– Finite State Machine Specification
– Grammar-based Specification

30 January 2009 9Software Testing: Lecture 5

Control Flow Graphs (e.g. UML Activity Diagrams)

Often specify the human process the system is intended to
support.
Can be used to represent both “normal” and “erroneous”
behaviours (and recovery behaviour).
Abstract away from internal representations.
Focus on interactions with the system

30 January 2009 10Software Testing: Lecture 5

Shipping Order Process

P&Y p.259:
Figure 14.7

30 January 2009 11Software Testing: Lecture 5

Different Adequacy Criteria Are Applicable

Node coverage – ensure that test cases cover all the nodes in
the flow graph.
Branch coverage – ensure we branch in both directions at each
decision node.
Mutations – we might also consider introducing mutations where
the user does not follow the control graph:
– can provide explanations of “automation surprises” (see Rushby

paper in readings).
– Machines are often better at remembering state than humans

(recall “cruise control” example from first year?)

30 January 2009 12Software Testing: Lecture 5

Coverage Criteria
P&Y p.260:

Figures 14.8 & 14.9

30 January 2009 13Software Testing: Lecture 5

Finite State Machines

Good at describing interactions in systems with a small number
of modes.
Good at describing transducers (via finite state machines).
Widely used in industry (via Statecharts (see Harel reference
in the Readings) + associated tools).
Most systems are “infinite state” (or effectively so), but many
systems are finite state + parameters – there are a finite set
of states that control the way data is moved around.
Good examples are systems like communication protocols or
many classes of control systems (e.g. automated braking, flight
control systems).
Transitions are generally made on inputs (e.g. the discovery of
some state of affairs – e.g. that the wheels are locked in a
braking system)
Good for describing interactive systems that rarely reach a
final state

30 January 2009 14Software Testing: Lecture 5

Example Finite State Machine

P&Y p.248:
Figure 14.2

30 January 2009 15Software Testing: Lecture 5

Designing tests

Sequence of inputs that drives the system though some sequence of
transitions.
We use coverage criteria to measure how successful we are in
exploring the specification.
The simplest criterion is that we have covered all transitions.

P&Y p.249:
Table 14.1

30 January 2009 16Software Testing: Lecture 5

Other Coverage Criteria

Implementations of FSM specification often have more state than the
specification (i.e. they may exhibit history sensitivity). Typically
because we introduce extra management into the system (e.g. the
possibility to undo some number of transitions).
As a result we often use other coverage criteria that explore the
behaviour more thoroughly, e.g.:
– Single state path coverage: collection of paths that cover the states:
– Single transition path coverage: collection of paths that cover all

transitions.
– Boundary interior loop coverage: criterion on number of times loops are

exercised.
Errors included by adding an Error state.
We can consider mutation to discover how the system responds to
unexpected inputs.
We can use probabilistic automata to represent distributions of inputs
if we want to do randomised testing.

30 January 2009 17Software Testing: Lecture 5

Grammar-based Testing

Grammars are used to describe well-formed inputs to systems.
We might want to know the system responds correctly to all
such inputs.
We can use grammars to generate sample inputs.
We can use coverage criteria on a test set to see that all
constructs are covered.
We can use probabilistic CFGs to capture distributions on
particular inputs.
As XML is used increasingly to define transfer formats etc
grammar-based testing is becoming increasingly important.
Grammar-based testing is fairly easy to automate.

30 January 2009 18Software Testing: Lecture 5

A Sample Grammar and Test Case

P&Y p.261:
Figure 14.11

P&Y p.264:
Figure 14.14

30 January 2009 19Software Testing: Lecture 5

Generating Tests

Coverage criteria are important, e.g.:
– Every production at least once
– Boundary conditions on recursive productions – 0, 1, many

Probabilistic CFGs allow us to prioritise heavily used constructs.
Probabilistic CFGs can be used to capture and abstract real-
world data.
We can easily generate erroneous data using simple mutations in
the rules or final sentential forms.
CFGs can be used to model interaction and low level detail in
GUIs.

30 January 2009 20Software Testing: Lecture 5

Choice Criteria

What form does the specification take?
Experience of the team in different methods.
Availability and quality of tools
Cost/benefit analysis on the range of techniques and the
available budget (some approaches may require too much
infrastructure

