
Software Testing: Lecture 2 116 January 2009

Tools for Unit Test - JUnit

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

16 January 2009 2Software Testing: Lecture 2

JUnit

JUnit is a framework for writing tests
– Written by Erich Gamma (Design Patterns) and Kent Beck

(eXtreme Programming)
– JUnit uses Java’s reflection capabilities (Java programs can

examine their own code)
– JUnit allows us to:

• define and execute tests and test suites
• Use test as an effective means of specification
• write code and use the tests to support refactoring
• integrate revised code into a build

– JUnit is available on several IDEs, e.g. BlueJ, JBuilder, and Eclipse
have JUnit integration to some extent.

16 January 2009 3Software Testing: Lecture 2

JUnit’s Terminology

A test runner is software that runs tests and reports results.
– Many implementations: standalone GUI, command line, integrated into IDE

A test suite is a collection of test cases.
A test case tests the response of a single method to a particular set
of inputs.
A unit test is a test of the smallest element of code you can sensibly
test, usually a single class
A test fixture is the environment in which a test is run. A new fixture
is set up before each test case is executed, and torn down afterwards.
– Example: if you are testing a database client, the fixture might place the

database server in a standard initial state, ready for the client to connect.
An integration test is a test of how well classes work together.
– JUnit provides some limited support for integration tests.

Proper unit testing would involve mock objects – fake versions of the
other classes with which the class under test interacts. JUnit doesn’t
help with this. It’s worth knowing about, but not always necessary.

16 January 2009 4Software Testing: Lecture 2

Structure of a JUnit test class

We want to test a class named Triangle
public class TriangleTest

extends junit.framework.TestCase {
– This is the unit test for the Triangle class; it defines objects used by one

or more tests.
public TriangleTest() { }
– This is the default constructor.

protected void setUp()
– Creates a test fixture by creating and initializing objects and values.

protected void tearDown()
– Releases any system resources used by the test fixture. Java usually

does this for free, but files, network connections etc. might not get
tidied up automatically.

public void testTriangle(), public void testIsScalene(), etc.
– These methods contain tests for the Triangle constructor and its

isScalene() method.

JUnit 3!

16 January 2009 5Software Testing: Lecture 2

Making Tests: Assert

Within a test,
– Call the method being tested and get the actual result.
– assert a property that should hold of the test result.
– Each assert is a challenge on the test result.

If the property fails to hold then assert fails, and throws an
AssertionFailedError:
– JUnit catches these Errors, records the results of the test and displays

them.
static void assertTrue(boolean test)
static void assertTrue(String message, boolean test)
– Throws an AssertionFailedError if the test fails.
– The optional message is included in the Error.

static void assertFalse(boolean test)
static void assertFalse(String message, boolean test)
– Throws an AssertionFailedError if the test succeeds.

16 January 2009 6Software Testing: Lecture 2

Aside: Throwable

java.lang.Error: a problem that an application wouldn’t
normally try to handle. Don’t need to be declared in throws
clause.
– e.g. command line application given bad parameters by user.

java.lang.Exception: a problem that the application might
reasonably cope with. Need to be declared in throws clause.
– e.g. network connection timed out during connect attempt.

java.lang.RuntimeException: application might cope with
it, but rarely. Don’t need to be declared in throws clause.
– e.g. I/O buffer overflow.

16 January 2009 7Software Testing: Lecture 2

Example: Triangle class

For the sake of example, we will create and test a trivial
“Triangle” class:
The constructor creates a Triangle object, where only the
lengths of the sides are recorded and the private variable p is
the longest side.
The isScalene method returns true if the triangle is scalene.
The isEquilateral method returns true if the triangle is
equilateral.
We can write the test methods before the code.
This has advantages in separating coding from testing.
But Eclipse helps more if you create the class under test
first:
– Creates test stubs (methods with empty bodies) for all methods

and constructors.

16 January 2009 8Software Testing: Lecture 2

Notes on creating tests

Often the amount of (very routine) test code will exceed the
size of the code for small systems.
Testing complex code can be a complex business and the tests
can get quite complex.
The effort taken in creating test code is repaid in reduced
development time, most particularly when we go on to use the
test subject in anger (i.e. real code).
Creating a test often helps clarify our ideas on how a method
should behave (particularly in exceptional circumstances).

16 January 2009 9Software Testing: Lecture 2

A JUnit 3 test for Triangle

import junit.framework.TestCase;

public class TriangleTest extends TestCase {
private Triangle t;

protected void setUp() { // executed before each test
t = new Triangle(5,4,3);

}

protected void tearDown() {} // executed after each test

public void testIsScalene() {
assertTrue(t.isScalene());

}

public void testIsEquilateral() {
assertFalse(t.isEquilateral());

}
}

16 January 2009 10Software Testing: Lecture 2

A JUnit 4 test for Triangle

package st;

import static org.junit.Assert.*;

import org.junit.Before;
import org.junit.Test;

public class TestTriangle {

private Triangle t;

@Before public void setUp() throws Exception {
t = new Triangle(3, 4, 5);

}

@Test public void scaleneOk() {
assertTrue(t.isScalene());

}
}

More imports

No need to inherit from TestCase

Use annotations …

… rather than
special names

16 January 2009 11Software Testing: Lecture 2

The Triangle class itself

Is JUnit too much for small
programs?
Not if you think it will reduce
errors.
Tests on this scale of program often
turn up errors or omissions –
construct the tests working from
the specification
Sometimes you can omit tests for
some particularly straightforward
parts of the system

public class Triangle {
private int p; // Longest edge
private int q;
private int r;

public Triangle(int s1, int s2, int s3) {
if (s1>s2) {

p = s1; q = s2;
} else {

p = s2; q = s1;
}
if (s3>p) {

r = p; p = s3;
} else {

r = s3;
}

}

public boolean isScalene() {
return p>0 && q>0 && r>0 && p<(q+r) &&

q != r && r != p && p != q;
}

public boolean isEquilateral() {
return p == q && q == r;

}
}

16 January 2009 12Software Testing: Lecture 2

Assert methods II

assertEquals(expected, actual)
assertEquals(String message, expected, actual)
– This method is heavily overloaded: arg1 and arg2 must be both objects or

both of the same primitive type
– For objects, uses your equals method, if you have defined it properly, as

public boolean equals(Object o)—otherwise it uses ==

assertSame(Object expected, Object actual)
assertSame(String message, Object expected, Object actual)
– Asserts that two objects refer to the same object (using ==)

assertNotSame(Object expected, Object actual)
assertNotSame(String message, Object expected, Object actual)
– Asserts that two objects do not refer to the same object

16 January 2009 13Software Testing: Lecture 2

Assert methods III

assertNull(Object object)
assertNull(String message, Object object)
– Asserts that the object is null

assertNotNull(Object object)
assertNotNull(String message, Object object)
– Asserts that the object is null

fail()
fail(String message)
– Causes the test to fail and throw an AssertionFailedError
– Useful as a result of a complex test, when the other assert methods

aren’t quite what you want

16 January 2009 14Software Testing: Lecture 2

The assert statement in Java

Earlier versions of JUnit had an assert method instead of an assertTrue
method
– The name had to be changed when Java 1.4 introduced the assert statement

There are two forms of the assert statement:
– assert boolean_condition;
– assert boolean_condition: error_message;
– Both forms throw an AssertionFailedError if the boolean_condition is false
– The second form, with an explicit error message, is seldom necessary

When to use an assert statement:
– Use it to document a condition that you “know” to be true
– Use assert false; in code that you “know” cannot be reached (such as a

default case in a switch statement)
– Do not use assert to check whether parameters have legal values, or other

places where throwing an Exception is more appropriate
– Can be dangerous: customers are not impressed by a library bombing out

with an assertion failure.

16 January 2009 16Software Testing: Lecture 2

JUnit in Eclipse

To create a test class, select
File → New → JUnit Test Case and
enter the name of your test case

Test class

Decide what stubs you
want to create

Package

Identify the class
under test

16 January 2009 17Software Testing: Lecture 2

Creating a Test

Decide what you want to test

16 January 2009 18Software Testing: Lecture 2

Template for New Test

16 January 2009 19Software Testing: Lecture 2

Running JUnit

16 January 2009 20Software Testing: Lecture 2

Results Results are here

16 January 2009 21Software Testing: Lecture 2

Aside: FIT

Framework for Integrated Tests, by Ward Cunningham
(inventor of wiki)
Allows closed loop between customers and developers:
– Takes HTML tables of expected behaviour from customers or spec.
– Turns those tables into test data: inputs, activities and assertions

regarding expected results.
– Runs the tests and produces tabular summaries of the test runs.

Only a few years old, but lots of people seem to like it; various
commercial folk I’ve introduced it to still seem to think it’s
revolutionary.
http://fit.c2.com/

16 January 2009 22Software Testing: Lecture 2

Issues with JUnit

JUnit has a model of calling methods and checking results against the
expected result. Issues are:
State: objects that have significant internal state (e.g. collections
with some additional structure) are harder to test because it may
take many method calls to get an object into a state you want to
test. Solutions:
– Write long tests that call some methods many times.
– Add additional methods in the interface to allow observation of state (or

make private variables public?)
– Add additional methods in the interface that allow the internal state to

be set to a particular value
– Heisenbugs can be an issue in these cases (changing the observerations

changes what is observed).
Other effects, e.g. output can be hard to capture correctly.
JUnit tests of GUIs are not particularly helpful (recording gestures
might be helpful here?)

16 January 2009 23Software Testing: Lecture 2

Positives

Using JUnit encourages a “testable” style, where the result of a
calling a method is easy to check against the specification:
– Controlled use of state
– Additional observers of the state (testing interface)
– Additional components in results that ease checking

It is well integrated into a range of IDEs (e.f. Eclipse)
Tests are easy to define and apply in these environments.
JUnit encourages frequent testing during development (e.g. XP
(eXtreme Programming) “test as specification”)
JUnit tends to shape code to be easily testable.
JUnit supports a range of extensions that support structured
testing (e.g. coverage analysis) – we will see some of these
extensions later.

16 January 2009 24Software Testing: Lecture 2

Get testing!

Start up Eclipse and:
– Create a new Java project
– Add a nw package, “st”
– Create st.Triangle; use File->Import (from File System) to

copy ~chughes1/shared/Triangle.java into
Triangle/src/st

– Create a new source folder called “tests” if you like (with a
new “st” package)

– Create a new JUnit test for st.Triangle
– And get testing!

