
Software Testing: Lecture 1 113 January 2009

Software Testing: Overview

Conrad Hughes
School of Informatics

Slides thanks to Stuart Anderson

13 January 2009 2Software Testing: Lecture 1

Course Administration

Main text, and others worth looking at:
– Pezzè & Young, Software Testing and Analysis: Process, Principles and

Techniques, Wiley, 2007.
– G.J. Myers, The Art of Software Testing, John Wiley & Sons, New York,

1976, now in a second edition.
– B. Marick, The Craft of Software Testing, Prentice Hall, 1995
– C Kaner, J. Bach, B. Pettichord, Lessons Learned in Software Testing,

Wiley, 2001
Material covered via readings, presentations, web resources and
practical experience.
Conrad Hughes, Informatics Forum 3.46 [conrad.hughes@ed]
Web page: http://www.inf.ed.ac.uk/teaching/courses/st/
Useful: http://www.cs.uoregon.edu/~michal/book/index.html
Useful: http://www.testingeducation.org

13 January 2009 3Software Testing: Lecture 1

Grading on the Course

Two equal practicals worth 25% of the final mark. Practicals will
involve actually testing some software systems.
One examination worth 75%
Quizzes and homeworks in the tutorials – not assessed but doing
them will make it easier to do the examination and practicals.

13 January 2009 4Software Testing: Lecture 1

Famous person’s quote time!

“…testing can be a very effective way to show the
presence of bugs, but is hopelessly inadequate
for showing their absence. The only effective way
to raise the confidence level of a program
significantly is to give a convincing proof of its
correctness.”

- Edsger Dijkstra
[http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html]

13 January 2009 5Software Testing: Lecture 1

So really, why do we test?

To find faults
– Glenford Myers, The Art of Software Testing

To provide confidence
– of reliability
– of (probable) correctness
– of detection (therefore absence) of particular faults

Other issues include:
– Performance of systems (i.e. use of resources like time, space, bandwidth,

…).
– “…ilities” can be the subject of test e.g. usability, learnability, reliability,

availability,
Kaner and Bach: a technical investigation carried out to expose
quality-related information on the product under test.

13 January 2009 6Software Testing: Lecture 1

Testing Theory

But Dijkstra viewed programs as primarily abstract mathematical
objects – for the tester they are engineered artifacts – the
mathematics informs the engineering – but that is not the whole
story (e.g. integers – a common trap for the unwary).
Plenty of negative results
– Nothing guarantees correctness
– Statistical confidence is prohibitively expensive
– Being systematic may not improve fault detection

• as compared to simple random testing
– Rates of fault detection don’t correlate easily with measures of system

reliability.
Most problems to do with the “correctness” of programs are formally
undecidable (e.g. program equivalence).

13 January 2009 7Software Testing: Lecture 1

What Information Do We Have Available?

Specifications (formal or informal)
– To check an output is correct for given inputs
– for Selection, Generation, Adequacy of test sets

Designs/Architecture
– Useful source of abstractions
– We can design for testability
– Architectures often strive to separate concerns

Code
– for Selection, Generation, Adequacy
– Code is not always available
– Focus on fault/defect finding can waste effort

Usage (historical or models) – e.g. in telecom traffic
Organization experience – if the organisation gathers information

13 January 2009 8Software Testing: Lecture 1

Testing for Reliability

Reliability is statistical, and requires a statistically valid sampling
scheme
Programs are complex human artifacts with few useful statistical
properties
In some cases the environment (usage) of the program has useful
statistical properties
– Usage profiles can be obtained for relatively stable, pre-existing systems

(telephones), or systems with thoroughly modeled environments (avionics)

13 January 2009 9Software Testing: Lecture 1

A Hard Case: Certifying Ultra-High Reliability

Some systems are required to demonstrate very high reliability
(e.g. an aircraft should only fail completely once in 1011 hours of
flying).
So aircraft components have to be pretty reliable (but think
about how many single points of failure a car has).
How can we show that the avionics in a fly-by-wire aircraft will
only fail once in 109 hours of flying (so there is a way to fly
without avionics).
Butler & Finelli estimate
– for 10-9 per 10 hour mission
– requires: 1010 hours testing with 1 computer
– or: 106 hours (114 years) testing with 10,000 computers

[ACM Sigsoft 91, Conf. on SW for Critical Systems]
[also Littlewood and Strigini, Validation of ultrahigh dependability for

software-based systems, CACM, 69-80, vol 36, no 11, 1993.]

13 January 2009 10Software Testing: Lecture 1

Standard Testing Activities

Phase 1: Modelling the environment of the software
– What is the right abstractions for the interface?

Phase 2: Selecting test scenarios
– How shall we select test cases?

• Selection; generation
Phase 3: Running and evaluating test scenarios
– Did this test execution succeed or fail?

• Oracles
– What do we know when we’re finished?

• Assessment
Phase 4: Measuring testing progress
– How do we know when we’ve tested enough?

• Adequacy

13 January 2009 11Software Testing: Lecture 1

Phase 1: Modelling the Environment

Testers identify and simulate interfaces that a software system uses
Common interfaces include:
– Human interfaces
– Software interfaces (aka APIs)
– File system interfaces
– Communication interfaces

Identify interactions that are beyond the control of the system, e.g.
– Hardware being powered off and on unexpectedly
– Files being corrupted by other systems/users
– Contention between users/systems

Issues in building abstractions include: choosing representative
values, combinations of inputs, sequence (finite state machine models
are often used)

13 January 2009 12Software Testing: Lecture 1

Phase1: Partition the Input Space

Basic idea: Divide program input space into (what we think might be)
equivalence classes
– Use representatives of the “equivalence classes” to model the domain
– Worry about the boundaries because we don’t know if we have the right

partition.

13 January 2009 13Software Testing: Lecture 1

Phase 1: Specification-Based Partition Testing

Divide the program input space according to cases in the specification
– May emphasize boundary cases
– Combining domains can create a very large number of potential cases.
– Abstractions can lose dependencies between inputs

Testing could be based on systematically “covering” the categories
– The space is very large and we probably still need to select a subset.
– May be driven by scripting tools or input generators
– Example: Category-Partition testing [Ostrand]

Many systems don’t have particularly good specifications.
Some development approaches use tests as a means of specification.

13 January 2009 14Software Testing: Lecture 1

Quiz: Testing Triangles (G. Myers)

You are asked to test a method Triangle.scalene(int,int,int) that
returns a boolean value.
Triangle.scalene(p,q,r) is true when p, q and r are the lengths of the
sides of a scalene triangle.
Scalene as opposed to equilateral or isosceles
Construct an adequate test set for such a method.

13 January 2009 15Software Testing: Lecture 1

Quiz: Rate Yourself

1. A valid scalene triangle (e.g. 4,3,2)
2. A valid equilateral triangle.
3. A valid isosceles triangle (e.g. 2,4,4 not 4,2,2)
4. Permuted isosceles inputs (e.g. 2,4,4; 4,2,4; 4,4,2)
5. Zero side length?
6. Negative side lengths?
7. Inputs such that p=q+r
8. Permutations of test cases 7.
9. Inputs such that p > q+r
10. Permutations of test cases 9.
11. All zero?
12. Did you specify the expected result in all cases?
13. If we had an interface to the function there would be many more.

13 January 2009 16Software Testing: Lecture 1

Quiz: Does having the code help? [1]

public class Triangle {
public boolean scalene(int p, int q, int r) {
int tmp;
if (q>p){tmp = p; p = q; q = tmp;}
if (r>p){tmp = p; p = r; r = tmp;}

return((r>0)&&(q>0)&&(p>0)&&
(p<(q+r))&& ((q>r)||(r>q)));

}
}

13 January 2009 17Software Testing: Lecture 1

Quiz: Does having the code help? [2]

public class Triangle {
public boolean scalene(int p, int q, int r) {
if(q > p) SWAP(p, q);
if(r > p) SWAP(p, r);
if(r > q) SWAP(q, r);
return (r > 0) && (p < q + r) &&

(q < r) && (r < p);
}

}

13 January 2009 18Software Testing: Lecture 1

Quiz: Summary

The code is less than 10 lines long – we seem to
need at least the same number of tests to check
it.
Many modern systems are multi-million line
systems.
Daunting task to work out how to test such
systems.
Part of the approach is to change the way
systems are built.

13 January 2009 19Software Testing: Lecture 1

Doomed software project time!

“Vice President Jim Allchin, personally broke the bad news
to Bill Gates. Allchin is co-head of the Platform Products
and Services Division. "It's not going to work," he told
Gates in the chairman's office mid-2004, the paper
reports. "[Longhorn] is so complex its writers will never
be able to make it run properly. "The reason: Microsoft
engineers were building it just as they had always built
software. Thousands of programmers each produced their
own piece of computer code, to be stitched together into
one sprawling program. But Longhorn/Vista was too
complex: Microsoft needed to begin again, Allchin told
Gates. “

13 January 2009 20Software Testing: Lecture 1

Phase 2: Selecting Tests

What criteria can we use to cut down the number of tests.
Common criteria are coverage criteria:
– We have executed all statements.
– We have executed all branches
– We have executed all possible paths in the program
– We have covered all possible data flows.

We might also try to evaluate the effectiveness of test cases by
seeding errors in the code and seeing how well a test set does in
finding the errors.
We might also consider statistical measures e.g. that we have a
statistically valid sample of the possible inputs (but here we need a
good idea of the distribution of inputs).

13 January 2009 21Software Testing: Lecture 1

Phase 2: Test Adequacy

Ideally: adequate testing ensures some property (proof by cases)
– Origins in [Goodenough & Gerhart], [Weyuker and Ostrand]
– It is very hard to establish non-trivial properties using these methods

(unless the system is clearly finite)
Practical “adequacy” criteria are safety measures designed to
identify holes in the test set:
– If we have not done this kind of test some instances of this kind of test

should be added to the test set.

13 January 2009 22Software Testing: Lecture 1

Phase 2: Systematic Testing

Systematic (non-random) testing is aimed at program improvement,
i.e. finding faults not trying to predict the statistical behaviour of
the program
– Obtaining valid samples and maximizing fault detection require different

approaches; it is unlikely that one kind of testing will be satisfactory for
both

“Adequacy” criteria mostly negative: indications of important
omissions
– Positive criteria (assurance) are no easier than program proofs

13 January 2009 23Software Testing: Lecture 1

Phase 2: Structural Coverage Testing

(In)adequacy criteria
– If significant parts of program structure are not tested, testing is surely

inadequate
Control flow coverage criteria
– Statement (node, basic block) coverage
– Branch (edge) and condition coverage
– Data flow (syntactic dependency) coverage
– Various control-flow criteria

Attempted compromise between the impossible and the inadequate

13 January 2009 24Software Testing: Lecture 1

Phase 2: Basic structural criteria

a

b

c

d

e

f

Edge ac is required by all-edges but
not by all-nodes coverage

Typical loop coverage criterion
would require zero iterations
(cdf), one iteration (cdedf), and
multiple iterations (cdededed...df)

13 January 2009 25Software Testing: Lecture 1

Phase 2: Data flow coverage criteria

x := 7

y := x

y := y+1

z := x+y

2 reaching definitions
(one is from self)

2 reaching definitions for x,
and 2 reaching definitions for y

Rationale: An untested def-use
association could hide an
erroneous computation

13 January 2009 26Software Testing: Lecture 1

Phase 2: Structural Coverage in Practice

Statement and sometimes edge or condition coverage is used in
practice
– Simple lower bounds on adequate testing; may even be harmful if

inappropriately used for test selection – too much focus on structure
diverts effort from bugs that worry users

Additional control flow heuristics sometimes used
– Loops (never, once, many), combinations of conditions
– Potential linkage to static flow analysis literature

Slicing and abstract interpretation approaches allow the checking of
basic properties on large bodies of code (e.g. Airbus 380 avionics ~3-
4 Mloc)

13 January 2009 27Software Testing: Lecture 1

Phase 2: Fault-based testing

Given a fault model
– hypothesized set of deviations from correct program
– typically, simple syntactic mutations; relies on coupling of simple faults

with complex faults
Coverage criterion: Test set should be adequate to reveal (all, or x%)
faults generated by the model
– similar to hardware test coverage

13 January 2009 28Software Testing: Lecture 1

Phase 2: Fault Models

Fault models are key to semiconductor testing
– Test vectors graded by coverage of accepted model of faults (e.g.,

“stuck-at” faults)
What are fault models for software?
– What would a fault model look like?
– How general would it be?

• Across application domains?
• Across organizations?
• Across time?

Defect tracking is a start – gathering collections of common faults in
an organisation – rigorous process – links to Capability Maturity Model
and optimising organisations.

13 January 2009 29Software Testing: Lecture 1

Phase 2: Selection vs. Adequacy
Mutation Testing Example

Red fish = real program faults (unknown population)
Blue fish = seeded faults (e.g., mutations) or representative behaviors
(known population)
Adequacy: count blue fish caught, estimate red fish
Misuse for selection: use special bait to catch blue fish

13 January 2009 30Software Testing: Lecture 1

Phase 2: Test Selection: Standard Advice

Specification coverage is good for selection as well as adequacy
– applicable to informal as well as formal specs

Fault-based tests
– usually ad hoc, sometimes from check-lists

Program coverage last
– to suggest uncovered cases, not just to achieve a coverage criterion

13 January 2009 31Software Testing: Lecture 1

Phase 2: The Bottom Line: The Budget Coverage Criterion

A common answer to “when is testing done”
– When the money is used up
– When the deadline is reached

This is sometimes a rational approach!
– Implication 1: Test selection is more important than stopping criteria per

se.
– Implication 2: Practical comparision of approaches must consider the cost

of test case selection
Example: testing of SAFEBUS – started out with a pile of money and
stopped when they ran out (could have more money if it was still
flakey).

13 January 2009 32Software Testing: Lecture 1

Phase 3: Running and Evaluating Tests

The magnitude of the task is a problem than can require tools to help
– automated testing means we can do more testing but in some
circumstances it is hard (e.g. GUIs)
Is the answer right? Usually called the Oracle problem – often the
oracle is human.
Two approaches to improving evaluation: better specification to help
structure testing; embedded code to evaluate structural aspects of
testing (e.g. providing additional interfaces to normally hidden
structure.
Through life testing: most programs change (some are required not to
change by law) – regression testing is a way of ensuring the next
version is a least as good as the previous one.
Reproducing errors is difficult – attempt to record sequence of
events and replay – issues about replicating the environment.

13 January 2009 33Software Testing: Lecture 1

Phase 3: The Importance of Oracles

Much testing research has concentrated on adequacy, and ignored
oracles
Much testing practice has relied on the “eyeball oracle”
– Expensive, especially for regression testing

• makes large numbers of tests infeasible
– Not dependable

Automated oracles are essential to cost-effective testing

13 January 2009 34Software Testing: Lecture 1

Phase 3: Sources of Oracles

Specifications
– sufficiently formal (e.g., SCR tables)
– but possibly incomplete (e.g., assertions in Anna, ADL, APP, Nana)

Design, models
– treated as specifications, as in protocol conformance testing

Prior runs (capture/replay)
– especially important for regression testing and GUIs; hard problem is

parameterization

13 January 2009 35Software Testing: Lecture 1

Phase 3: What can be automated?

Oracles
– assertions; replay; from some specifications

Selection (Generation)
– scripting; specification-driven; replay variations
– selective regression test

Coverage
– statement, branch, dependence

Management

13 January 2009 36Software Testing: Lecture 1

Phase 3: Design for Test: 3 Principles

Observability
– Providing the right interfaces to observe the behavior of an individual

unit or subsystem
Controllability
– Providing interfaces to force behaviors of interest

Partitioning
– Separating control and observation of one component from details of

others

Adapted from circuit and chip designAdapted from circuit and chip design

13 January 2009 37Software Testing: Lecture 1

Phase 4: Measuring Progress (Are we done yet?)

Structural:
– Have I tested for common programming errors?
– Have I exercised all of the source code?
– Have I forced all the internal data to be initialized and used?
– Have I found all seeded errors?

Functional:
– Have I thought through the ways in which the software can fail and

selected tests that show it doesn’t?
– Have I applied all the inputs?
– Have I completely explored the state space of the software?
– Have I run all the scenarios that I expect a user to execute?

13 January 2009 38Software Testing: Lecture 1

Summary

We have outlined the main activities in testing activity:
– Modelling the environment
– Test Selection
– Test execution and assessment
– Measuring progress

These are features of all testing activity.
Different application areas require different approaches
Different development processes might reorganise the way we put
effort into test but the amount of test remains fairly constant for a
required level of product quality.

13 January 2009 39Software Testing: Lecture 1

Acknowledgements

Michal Young’s overview of software testing.
James A. Whittaker’s What is Software Testing…
Brad Meyer’s Art of Software testing for the scalene triangle
example

