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What can we Infer from Dynamics Models?

* Long-term dynamic behaviour
— Stability: Will the dynamics converge? Will it come to rest?

— Transient Response: How much will the state fluctuate in
response to perturbations?

— Given a certain family of control strategies, can this system be
stabilized?

* Global Properties

— Given that most of these equations are nonlinear, what kinds of
phase space trajectories are possible?

— What is the local structure along the various paths?



Example: Pendulum Phase Space
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* Phase space is organized into families (open sets) of trajectories
 The phase space curves are parameterized by increasing energy

How do we deseribe more complex robots, angtﬁaaLLz{j?
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Linear Time Invariant (LTI) Systems

* Consider the simple spring-mass-damper system:

 The force applied by the spring is Fs = —kz(t)

* Correspondingly, for the damper: Fa=17:(?)

* The combined equation of motion of the mass becomes:
r3(t) = —3(t) — k2(1)

* One could also express this in state space form:

0= (40)~(soritrin)
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Solution of a Linear ODE

r=kr.rceR

K

For initial condition ¢(0) = xg. the solution is ¢(t) = " xg

i.e., time evolution of state is given by operator g* = e**, with velocity v = kt

This type of “exponential term™ is a feature of all linear dynamical systems

The multivariate case: z(t) = eAlt—to) g,
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Example

Determine the matrix exponential, and hence the state transition matrix, and
the homogeneous response to the initial conditions z,(0) = 2, x5(0) = 3 of the
system with state equations:

;i?l = —2;E1—|—’U-

;i?g = TI1 — To.

The system matrix is

-2 0
a-(77 0
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Example, contd.

EAt
Aitﬁ ABTE Akfk
(I+At+ 5 + 3 + o +)
1 o], [-2 o], [ 40]F
0 1 1 —1 -3 1|2
N I I
T 113
412 83
L=20+ o — o + 0
0 3tz Tt , R
e~ 2t 0
q)(t):{ﬁ—t_g—it E—t]

Structure and Synthesis of Robot Motion




08/03/2012

Example, contd.

ri(t) = 2%
To(t) = 2 (e_t — e_gt) + 3e”!

— He t—92e %
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Basic Notion: Stability

Simple question:
Given the system, () = Az(t)
where in phase space, (z.%) , will it come to rest?

ANY QUESSES?
Think about solution tin previous slide,..

This point is called the equilibrium point
— If initialized there, dynamics will not take it away
— |If perturbed, system will eventually return and stay there



Stability

An equilibrium position z = 0 is stable (in Lyapunov’s sense) if given € > 0,
46 > 0 (not dependent on t), s.t. Vg, |xp| < & the solution satisfies |d(t)| < e,
vt >0

Asymptotic stability: Lyapunov stabile and limy— o ¢(t) =0

x(0)

/
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Stability for an LTI System, i(t) = Ax(t)

1
Unforced (homogeneous) response:  z;(t) =Y mj;e™"
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Stability for an LTI System

' - dx; n |
If you differentiate the homogeneous response, dt"“ =Y \m;jetit
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LTI Stability, in algebraic equations

 The above equation leads to an eigenvalue problem:

A;m; = Am; 1=1,2,...,n.
AI—Alm; =0

 For this to have nontrivial solutions:

Characteristic equn.
A(\) = det [\ — A] = 0. —

N4 a, (N dha, AN 4. +aNtag=0
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Stability: LTI System, i(t) = Az(¢)

Theorem. Ler A\;, i € {1,2,...,n} denote the eigenvalues of A. Let re(\;) denote
the real part of \;. Then the following holds:

1.z = 0is stable if and only if re(\;) < 0, i
2. xe = 0 is asymptotically stable if and only if re(\;) < 0, Vi

3. xe = 0 is unstable if and only if re(\;) > 0, for some i

For the spring-mass-damper example, the eigenvalues are:

v/ V2 —4km

2m TS with positive damping, we
get asywmptotic stability
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Exercise

Can you visualize (i.e., draw the curve vs. time) state variables
for the case of asymptotic stability, instability and the
borderline in between?



But, Most Robots are Non-linear Systemes...

* One way to analyze such systems is through local linearization
— Determine a state of interest, fit linear model around it

 Consider a dynamics model:

d
aX,,.l.)(t) = F(Xrn,(t)a fn(t))

Velocity J Applied forces

: : e.g., control actions
Nonlinear equations 8-

of motion
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Taylor Series Expansion

d d
axn + EAX = F(xn + AXx, f, + Af)

oF OF
= F(Xn,fn) + (_) AX + (—) A f + higher—order terms
Jx | xn (1) of | xn (1)

T (t) (1)

d oF oF
—AXx(t) = | — Ax(t — Af(t
2ax(®) = ( “"X):-."::: <)+ (5r ) ., AR

()

%Ax(t) = AAx(t) + BAu(t), Ax(to) = x(to) — xn(to0)

-Local Linear system: oo Linear analysis
OR, find a Lyapunov function directly!
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Domain for the Dynamics

 Sometimes, the dynamics evolves on a surface

— Configuration space with interesting structure (e.g., space of shapes of
a distributed robot)

— Constraint manifold (set of c-space points subject to constraint)

E'EOW angle
a—

> ~\,:, n these instances,
%
8 5
2

a wore abstract description
it ts often helpful...
Configuration space
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Dynamics as Phase Flow

Phase space: M

Initial state: = « M

State at time t; g'x
Dynamics is a mapping from phase space to itself: g : M — M, vVt € R
g is a t-advance mapping with the property, ¢' ™5 = ¢'¢*

lg'z,t € R} describes a "phase curve”, a subset of phase space

A family of t-advance mappings (Vo € M) constitutes a “phase flow™

08/03/2012 Structure and Synthesis of Robot Motion

19



Notion of Fixed Point (Equilbrium)

There might be points at which the system tends not to move
If the system is initialized at that point, it stays there forever
In other words, the point maps back to itself:

gr=z,VteR

Many “controllers” used in robotics act to ensure that some
desired point in phase space is a fixed point

e.g., what do you do when holding a glass of water in your hand ?



Useful Viewpoint: Dynamics as Diffeomorphism

The phase flow is a diffeomorphism — maps phase space
points to other phase space points:

i =5

N 3

; R N

gt,z) =gz, tc Rz e M W N
ST !

. ) i . BT

e g is a differentiable mapping R

e g' : M — M is a diffeomorphism for every t € R

e The family {g'} is a 1-parameter group of transformations of M

Can You visualize fixed points in these terms?
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Orbital Stability

* From this viewpoint, stability doesn’t have to always be about
coming to rest at a point

— could be defined in terms of staying in a subset, e.g., path

Definition. An orbit vy(x) is orbitally stable if for any € > 0, there is a neighbour-
hood V" of x so that for all  in'V, yvx and v are e-close.
Loosely speaking, |y(z) — ()| < € at all times.

/¥(X)
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Useful Concept: Vector Field

(M, {g"}):

phase flow given by a 1-param group of diffeomorphisms on manifold M
ace veloei - At : . _d t
Phase velocity of flow g* at point x € M is a vector: v(z) = ‘t:Dg T

Aggregate phase velocity forms a vector field on phase space M

Points where this vector vanishes are “singular points™
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