1 SPNLP 2008: Lambda Terms, Quantifiers, Satisfaction

Contents

1	Outline	1
2	Typed Lambda Calculus	1
3	First Order Logic	2
4	Truth and Satisfaction	3

2 Typed Lambda Calculus

Transitive Verbs as Functions

We looked at replacing *n*-ary relations with functions. How does this work with transitive verbs?

- Version 1: chase of type $\langle IND, IND \rangle \rightarrow BOOL$
- Version 2: chase of type IND \rightarrow (IND \rightarrow BOOL)

Advantages of Version 2 (called a *curryed function*):

- Makes the syntax more uniform.
- Fits better with compositional semantics (discussed later)

Lambda

Lambdas talk about missing information, and where it is.

- The λ binds a variable.
- The positions of a λ -bound variable in the formula mark where information is 'missing'.
- Replacing these variables with values fills in the missing information.

Example:

• $\lambda x.(\max x)$	λ -abstract
• $(\lambda x.(manx)john)$	application
• (man john)	β -reduction/function application.

NB. I'm using ind to replace the term I used in the last lecture.

Types

- IND and BOOL are basic types.
- If σ, τ are types, then so is $(\sigma \to \tau)$. Brackets are omitted if no ambiguity.
- For types τ , we have variables $Var(\tau)$, constants $Con(\tau)$.
- Since we are doing first order logic, we will later restrict variables to Var(IND), but allow constants
 of any type.

Terms in Typed Lambda Calculus

We define terms **Term**(τ) of type τ :

- $Var(\tau) \subseteq Term(\tau)$.
- $Con(\tau) \subseteq Term(\tau)$.
- If $\alpha \in \mathbf{Term}(\sigma \to \tau)$ and $\beta \in \mathbf{Term}(\sigma)$ then $(\alpha \beta) \in \mathbf{Term}(\tau)$ (function application).
- If $x \in \mathbf{Var}(\sigma)$ and $\alpha \in \mathbf{Term}(\rho)$, then $\lambda x.\alpha \in \mathbf{Term}(\tau)$, where $\tau = (\sigma \to \rho)$

3 First Order Logic

Extending to a First Order Language

```
1. Variables i.e., Var(IND): x, y, z, ..., x_0, x_1, x_2, ...
```

```
2. Boolean connectives: \neg BOOL \rightarrow BOOL (negation) 
 \land BOOL \rightarrow (BOOL \rightarrow BOOL) (and) 
 \lor BOOL \rightarrow (BOOL \rightarrow BOOL) (or) 
 \rightarrow BOOL \rightarrow (BOOL \rightarrow BOOL) (if...then)
```

- 3. Quantifiers: \forall (all) \exists (some)
- 4. Equality: $= \tau \rightarrow (\tau \rightarrow BOOL)$
- 5. Punctuation: brackets and period

Quantifier Syntax

- If $\phi \in \text{Term}(BOOL)$, and $x \in \text{Var}(IND)$, then $\forall x.\phi$ and $\exists x.\phi \in \text{Term}(BOOL)$.
- $x \in Var(IND)$ is called an *individual variable*.

Syntactic conventions:

- Instead of writing $((=\alpha)\beta)$, $((\land \phi)\psi)$, etc., we write $(=\alpha=\beta)$, $(\phi \land \psi)$, etc.
- Instead of writing e.g., ((chase fido) john), we sometimes write (chase fido john).
- **NB** this is equivalent to *chase*(*john*, *fido*) on a relational approach.

Some Examples

- 1. $\exists x. (love x kim) Kim loves someone$
- 2. $(\neg \exists x. (love x kim))$ *Kim doesn't love anyone*
- 3. $\forall x.((\mathsf{robber}\,x) \to \exists y.((\mathsf{customer}\,y) \land (\mathsf{love}\,y\,x)))$ All robbers love a (perhaps different) customer
- 4. $\exists y.((\mathsf{customer}\,y) \land \forall x.((\mathsf{robber}\,x) \to (\mathsf{love}\,y\,x)))$ All robbers love the same customer

Free and Bound Variables

$$((\mathsf{customer}\, x) \lor \forall x. ((\mathsf{robber}\, x) \to \exists y. (\mathsf{person}\, y)))$$

- First occurrence of *x* is *free*;
- Second occurrence of x is bound; Occurrence of y is bound.
- Free variable \approx pronouns.
 - She loves Fido
- Context needed to interpret *she*; Something in addition to models so far needed to interpret free variables.

A WFF (**Term**(BOOL)) with no free variables is a (*closed*) sentence. FOL sentences \subset WFFs.

Formulas with free variables are sometimes called *open*.

4 Truth and Satisfaction

Interpreting FOL Sentences

Task:

- Compute whether a sentence is *true* or *false* with respect to a model.
 - Is the sentence an accurate description of the situation?

Strategy: Compositionality! Use recursion, but:

• Subformula of $\forall x. (\mathsf{robber}\, x)$ is $(\mathsf{robber}\, x)$ and this is not a sentence! So...

Satisfaction: $\llbracket \phi \rrbracket^{M,g} = 1$

Model M and variable assignment g satisfy the WFF ϕ .

- g defined for all individual variables, i.e., $x \in Var(IND)$;
- $g(x) \in D$.
- If α is an atomic term (\in **Con**(τ) \cup **Var**(τ)), then

$$i_V^g(\alpha) = \quad \left\{ \begin{array}{ll} g(\alpha) & \text{if } \alpha \text{ is a variable} \\ V(\alpha) & \text{if } \alpha \text{ is a constant} \end{array} \right.$$

- $[\exists x.\phi]^{M,g} = 1$ iff $[\![\phi]\!]^{M,g[u/x]} = 1$ for some $u \in D$
- g[u/x](x) = u
- ullet 'Try to find some value u for x that makes ϕ true'

Value of a term in a model

Where $M = \langle D, V \rangle$:

Truth (in terms of Satisfaction)

If $\phi \in \mathbf{Term}(\mathtt{BOOL})$, we often write $M, g \models \phi$ instead of $[\![\phi]\!]^{M,g'} = 1$.

It doesn't matter which *g* you use for sentences, so:

Truth: A *sentence* ϕ is true in a model M (written $M \models \phi$) iff for any g, M, $g \models \phi$

Validity: A sentence ϕ is valid (written $\models \phi$) iff for any M, $M \models \phi$

Entailment: $\phi_1, \dots, \phi_n \models \psi$ iff if $M, g \models \phi_i$ for all $i, 1 \leq i \leq n$, then $M, g \models \psi$