
SPNLP Assignment 1: Sample Answers

Alex Lascarides & Ewan Klein

March 7, 2008

Exercise 1

Subformula Free variables
1 (((Qx) ∨ ∃x.∀y.((P z x) ∧ (Qa))) ∨ ∀z.(Rxz x)) {x, z}
2 ((Qx) ∨ ∃x.∀y.((P z x) ∧ (Qa))) {x, z}
3 (Qx) {x}
4 ∃x.∀y.((P z x) ∧ (Qa)) {z}
5 ∀y.((P z x) ∧ (Qa)) {z, x}
6 ((P z x) ∧ (Qa)) {z, x}
7 (P z x) {z, x}
8 (Qa)) {}
9 ∀z.(Rxz x) {x}

10 (Rxz x) {x, z}

Points to note:

• Every formula is a subformula of itself.

• If Q is a quantifier, then φ is a subformula of Qx.φ; however, Qx is not a subformula of
Qx.φ so the question of x being free in Qx.φ does not arise.

Exercise 2

We had the following formulas (for better readability, expressed in relational rather than functional
form):

(1) ∀x.∃y.neighbour(x, y)

(2) ∀x.¬neighbour(x, x)

(3) ∀x.∀y.∀z.(neighbour(x, y) ∧ neighbour(y, z)→ neighbour(x, z)

Although it can be helpful to use the NLTK style models for exploring truth conditions, we can
also look at the argument more abstractly.

Let’s assume that there are exactly two individuals in the model, named a and b. From (1) we
can infer (i) and (ii) in the table below. From (2) we can infer (iii) and (iv). Given that we have
only two individuals, in (3) we replace x by a, y by b and z by a again. Now the antecedent of
the conditional is true, but the consequent contradicts (iii).

1

(i) neighbour(a, b)
(ii) neighbour(b, a)

(iii) ¬neighbour(a, a)
(iv) ¬neighbour(b, b)
(v) neighbour(a, b) ∧ neighbour(b, a))→ neighbour(a, a)

More generally, assume we have a finite, non-empty domain D = {d1, . . . , dn}, and draw a graph
in which edges correspond to the neighbour relation. At some point, we add the edge (dn−1, dn)
to the graph, where dn is the last element of D. By virtue of (1), we need to add (dn, di), for some
di, i ≤ n which is already in the graph. So we have a loop. Now by repeated appeal to (3), we can
conclude that (di, dn) is in the graph, so again by (3), (di, di) is in the graph, contradicting (2).

Exercise 3

The two formulae:

(4) a. ∀x.∀y.((P y x)→ (P x y))
b. ∀x.∀y.((Q1 y x)→ (Q2 x y))

Model:

P = {(a, b), (b, a)}
Q1 = {(c, d)}
Q2 = {(d, c)}

NL Relations: We have to find a symmetric relation for P , and instances of Q1, Q2 which are
converses of each other. For example, P ⇒ ‘is married to’, Q1 ⇒ ‘mother of’, Q2 ⇒ ‘child of’.

Exercise 4

Predicates

Type Vocabulary
ind→ bool block

cube
pyramid
red
green
yellow
table

(ind→ (ind→ bool)) larger
same-size
smaller
on

Model

M = 〈D,V 〉 where:

• D = {c1, c2, p1, p2, t}

2

• V (block) = {c1, c2, p1, p2}
V (cube) = {c1, c2}
V (pyramid) = {p1, p2}
V (red) = {c1, c2}
V (green) = {p1}
V (yellow) = {p2}
V (table) = {t}
V (larger) = {〈p1, p2〉}
V (same-size) = {〈c1, c2〉, 〈c2, c1〉, 〈c1, c1〉, 〈c2, c2〉, 〈p1, p1〉, 〈p2, p2〉, 〈t, t〉}
V (smaller) = {〈p2, p1〉}
V (on) = {〈c1, t〉, 〈c2, t〉, 〈p1, t〉, 〈p2, c1〉}

Note that we have tried to construct a model which corresponds fairly intuitively to our un-
derstanding of the natural language expressions. In particular, smaller is a relation, not a set.
Suppose, instead, that it is interpreted as a set, say S = {p2}, with the assumption that this means
that p2 is smaller than p1, which is not in the set S. The problem is that this won’t generalize
to three elements. Suppose p3 is smaller than p2, which in turn is smaller than p1. So p2 is in S
because it is smaller than p1 but it is also not in S because it is bigger than p3.

Formulae

Now here is a possible description of the scenario:

∃x0∃x1∃x2∃x3∃x4(block(x0) ∧ block(x1) ∧ block(x2) ∧ block(x3) ∧ table(x4)∧
x0 6= x1 ∧ x0 6= x2 ∧ x0 6= x3∧
x1 6= x2 ∧ x1 6= x3∧
x2 6= x3∧
∀y(block(y)→ (y = x0 ∨ y = x1 ∨ y = x2 ∨ y = x3))∧
cube(x0) ∧ cube(x1) ∧ pyramid(x2) ∧ pyramid(x3)∧
same-size(x0, x1) ∧ larger(x2, x3)∧
red(x0) ∧ red(x1) ∧ green(x2) ∧ yellow(x3)∧
on(x0, x4) ∧ on(x1, x4) ∧ on(x2, x4) ∧ on(x3, x0) ∨ on(x3, x1)

We can be somewhat more succinct by making it one big conjuncion, but it can also be split up
into smaller formulae.

However, this description doesn’t do justice to our intuitive understanding of the sets and relations
in the scenario. So we should look at adding some ‘background knowledge’ to supplement the
description:

∀x∀y(larger(x, y)↔ smaller(y, x))
∀x∀y((larger(x, y) ∨ smaller(x, y))↔ ¬same-size(x, y))
∀x(same-size(x, x))
∀x∀y(same-size(x, y)→ same-size(y, x))
∀x(block(x)→ (cube(x)↔ ¬pyramid(x)))
∀x(block(x)↔ ¬table(x))
∀x∀y(on(x, y)↔ ¬on(y, x))
∀x¬(on(x, x))

Alternative Models

An alternative vocabulary would not include same-size, instead definining it in terms of larger
and smaller. Similarly, one could remove smaller, and replacing it with ‘¬larger ’, or vice versa.
The above model respects the background knowledge given above, but if the model didn’t have

3

to satisfy this background knowledge, then the extensions of larger and smaller need not be anti-
symmetric, and the extension of same-size need not be an equivalence relation. We could also
increase the extensions of the colour predicates (making some objects both red and yellow, for
instance). We could remove 〈p2, c1〉 from V (on) and replace it with 〈p2, c2〉. And finally, we could
add further individuals to the model that aren’t blocks or tables.

Exercise 5

Let’s assume that (5-a) is represented as (5-b) in standard FOL, or equivalently as (5-b) in NLTK-
style LF.

(5) a. Suzie shows John a dog.
b. ∃x(dog(x) ∧ show(suzie, x, john))
c. some x.((dog x) and (show j x suzie))

Let’s also assume that the LF for shows John a dog is derived by combining shows John with a
dog.

Now, let’s figure out the lambda terms by working top-down from the root of the sentence. On the
left-hand side of the following tables we show the (type-raised) functor NP, and on the right-hand
side, the argument. So here’s how the subject combines with the VP:

Suzie shows John a dog
\P.(P suzie) \y.some x.((dog x) and (show john x y))

Down at the VP level, we need to combine a dog with shows John. So we need to pull out the
quantifier phrase and make it a functor:

a dog shows John
\P.some x.((dog x) and (P x)) \X y.(X \x.(show john x y))

And down another level, we pull out the NP argument John, and make it a functor. So the
expression on the right-hand side below is the representation we want for the verb shows:

John shows
\P.(P j) \Z X y.(X \x. (Z \z.(show z x y)))

There are two main ways of expressing the syntactic rule for ditransitives. If we stick to using
app(a, b) as the semantic form of the mother, then we can only use binary syntactic rules:

binary branching ditransitive VP
VP[num=?n,sem=<app(?dtvp,?obj)>] -> DTVP[num=?n,sem=?dtvp] NP[sem=?obj]
DTVP[num=?n,sem=<app(?v,?obj)>] -> DTV[num=?n,sem=?v] NP[sem=?obj]

DTV[num=sg,sem=<\Z X y.(X \x. (Z \z.(show z x y)))>,tns=pres] -> ’shows’
DTV[num=pl,sem=<\Z X y.(X \x. (Z \z.(show z x y)))>,tns=pres] -> ’show’

However, we are allowed to use more complex values in the semantics of the mother, such as the
following:

ternary branching ditransitive VP
VP[num=?n,sem=<((?dtvp ?obj1) ?obj2>] -> DTV[num=?n,sem=?dtvp] NP[sem=?obj1] NP[sem=?obj2]

Here is a model, with an evaluation of the sentence:

4

from nltk.sem import *
val = Valuation({
’suzie’: ’s’,
’john’: ’j’,
’dog’: {’f’: True},
’show’: {’j’: {’f’: {’s’: True}}}
})

dom = val.domain
m = Model(dom, val)
g = Assignment(dom)

e = ’some x.((dog x) and ((show john x) suzie))’
print m.evaluate(e, g)
True

Exercise 6

Here are LFs for the two readings:

(6) Every person needs a doctor.
a. ∃y(doctor(y) ∧ ∀x(person(x)→ need(x, y)))
b. ∀x(person(x)→ ∃y(doctor(y) ∧ need(x, y)))

Let’s consider the models M1, M2 defined as follows: M1 = 〈D,V1〉 where:

• D = {p1, p2, d1, d2}

• V1(person) = {p1, p2}
V1(doctor) = {d1, d2}
V1(need) = {〈p1, d1〉, 〈p2, d1〉}

M2 = 〈D,V2〉 where:

• D = {p1, p2, d1, d2}

• V2(person) = {p1, p2}
V2(doctor) = {d1, d2}
V2(need) = {〈p1, d1〉, 〈p2, d2〉}

(We have assumed, for simplicity, that doctors and people are disjoint!)

Now M1 |= (6-a), since d1 is a doctor such that every person (i.e., p1, p2) needs him/her. Moreover
M1 |= (6-b). By contrast M2 |= (6-b) but M2 6|= (6-a). So M1 satisfies both readings, and M2

satisfies only one reading, (6-b). So ∀M , if M |= (6-a) then M |= (6-b), but not conversely. So we
can conclude that (6-a) entails (6-b).

Exercise 7

Tableaux expansion rules:

5

Tnor : T (φ nor ψ)
Fφ
Fψ

Fnor : F (φ nor ψ)
Tφ Tψ

Proof of ¬(p ∨ q)↔ (pnorq). We do it in two stages.

→ direction:

1. F¬(p ∨ r)→ (p nor q)
√

2. T¬(p ∨ r) 1, F→,
√

3. F (p nor q)) 1, F→,
√

4. F (p ∨ r) 2, T¬,
√

5. Fp 4, F∨
6. Fq 4, F∨

7. Tp 3, Fnor Tq 3, Fnor

← direction:

1. F (p nor q)→ ¬(p ∨ r)
√

2. T (p nor q)) 1, F→,
√

3. F¬(p ∨ r) 1, F→,
√

4. Fp 2, Tnor

5. Fq 2, Tnor

6. T (p ∨ r) 3, F¬,
√

7. Tp 6, T∨ Tq 6, T∨

You can combine these two conditionals into a single tableau by using the following rule for
biconditionals:

F↔: F (φ nor ψ)
Tφ Fφ
Fψ Tψ

Exercise 8

In the following grammar, the event variable e gets passed through the rules by successive λ-
abstraction and β-conversion. In general — if we ignore type-raising over NP arguments — the
basic type of intransitive verbs become ind→ (ind→ bool), i.e., binary relations over individuals
and events. As a consequence, we change the type of NPs from (ind → bool) → bool to ((ind
→ (ind→ bool))→ (ind→bool), i.e., a function from binary relations to sets. This means that
the event variable of a VP that contains a quantified NP object will still be available for adverbial
modification. Finally, the semantic representation of an S, e.g., the value of (?subj ?vp), will be of
the form \e. phi. Existential quantification of the event variable takes place as a supplementary
step in the semantics for building S from NP and VP.

% start S

S[sem = <some e.((?subj ?vp) e)>] -> NP[num=?n,sem=?subj] VP[num=?n,sem=?vp]

NP[num=?n,sem=<app(?det,?nom)>] -> Det[num=?n,sem=?det] Nom[num=?n,sem=?nom]

NP[loc=?l,num=?n,sem=?np] -> PropN[loc=?l,num=?n,sem=?np]

6

Nom[num=?n,sem=?nom] -> N[num=?n,sem=?nom]

Nom[num=?n,sem=<app(?pp,?nom)>] -> N[num=?n,sem=?nom] PP[sem=?pp]

VP[num=?n,sem=<app(?v,?obj)>] -> TV[num=?n,sem=?v] NP[sem=?obj]

VP[num=?n,sem=?v] -> IV[num=?n,sem=?v]

VP[num=?n,sem=<app(?pp,?vp)>] -> VP[num=?n,sem=?vp] PP[sem=?pp]

VP[num=?n,sem=<app(?adv,?vp)>] -> VP[num=?n,sem=?vp] Adv[sem=?adv]

PropN[-loc,num=sg,sem=<\R e. (R john e)>] -> ’John’

PropN[-loc,num=sg,sem=<\R e. (R mary e)>] -> ’Mary’

PropN[-loc,num=sg,sem=<\R e. (R suzie e)>] -> ’Suzie’

PropN[-loc,num=sg,sem=<\R e. (R fido e)>] -> ’Fido’

PropN[+loc, num=sg,sem=<\P.(P noosa)>] -> ’Noosa’

NP[-loc, num=sg, sem=<\P.\x.(P x)>] -> ’who’

Det[num=sg,sem=<\P R e. all x. ((P x) implies (R x e))>] -> ’every’

Det[num=pl,sem=<\P R e. all x. ((P x) implies (R x e))>] -> ’all’

Det[sem=<\P R e. some x. ((P x) and (R x e))>] -> ’some’

Det[num=sg,sem=<\P R e. some x. ((P x) and (R x e))>] -> ’a’

N[num=sg,sem=<boy>] -> ’boy’

N[num=pl,sem=<boy>] -> ’boys’

N[num=sg,sem=<girl>] -> ’girl’

N[num=pl,sem=<girl>] -> ’girls’

N[num=sg,sem=<dog>] -> ’dog’

N[num=pl,sem=<dog>] -> ’dogs’

TV[num=sg,sem=<\X y. (X \x e. ((agent y e) and ((chase e) and (patient x e))))>,tns=pres] -> ’chases’

TV[num=pl,sem=<\X y. (X \x e. ((agent y e) and ((chase e) and (patient x e))))>,tns=pres] -> ’chase’

TV[num=sg,sem=<\X y. (X \x e. ((agent y e) and ((see e) and (patient x e))))>,tns=pres] -> ’sees’

TV[num=pl,sem=<\X y. (X \x e. ((agent y e) and ((see e) and (patient x e))))>,tns=pres] -> ’see’

IV[num=sg,sem=<\x e. ((agent x e) and (bark e))>,tns=pres] -> ’barks’

IV[num=pl,sem=<\x e. ((agent x e) and (bark e))>,tns=pres] -> ’bark’

IV[num=sg,sem=<\x e. ((agent x e) and (walk e))>,tns=pres] -> ’walks’

IV[num=pl,sem=<\x e. ((agent x e) and (walk e))>,tns=pres] -> ’walk’

Adv[sem=<\R x e. ((slow e) and (R x e))>] -> ’slowly’

Adv[sem=<\R x e. ((thoughtful e) and (R x e))>] -> ’thoughtfully’

Since the NLTK LogicParser is set up to only recognize x, y, z as individual variables, we can
modify the S rule along the following lines to ensure that the resulting LFs can be parsed:

S[sem = <some x.((event x) and ((?subj ?vp) e))>] -> NP[num=?n,sem=?subj] VP[num=?n,sem=?vp]

Sample model:

from nltk.sem import *
v = """
suzie => s
john => j
dog => {f}
girl => {s}
boy => {j}
event => {e1, e2, e3, e4, e5, e6}

7

walk => {e1, e2, e3}
slow => {e2}
see => {e4, e5, e6}
agent => {(e1, f), (e2, j), (e3, s), (e4, s), (e5, j), (e6, f)}
patient => {(e4, j), (e5, f), (e6, s)}
"""
val = parse_valuation(v)
dom = val.domain
m = Model(dom, val)
g = Assignment(dom)

expr = ’\ z. some x. ((event z) and ((boy x) and ((agent suzie z) and ((see z) and (patient x z)))))’

print m.evaluate(expr, g)
#True

8

