
Gary McGraw, Ph.D., Sammy Migues, and Jacob West

2 | Building Security in Maturity Model (BSIMM) Version 9

Executive Summary

The Building Security in Maturity Model (BSIMM) is the result of a multiyear study of real-world software
security initiatives. We present the BSIMM9 model as built directly out of data observed in 120 firms.
Seventy of the firms are listed in the Acknowledgments section on page 3.

The BSIMM is a measuring stick for software security. The best way to use the BSIMM is to compare and
contrast your own initiative with the data about what other organizations are doing contained in the model.
You can then identify your own goals and objectives and refer to the BSIMM to determine which additional
activities make sense for you.

The BSIMM data show that high maturity initiatives are well-rounded, carrying out numerous activities in all
12 of the practices described by the model. The model also describes how mature software security initiatives
evolve, change, and improve over time.

BSIMM9 License

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/legalcode or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Building Security in Maturity Model (BSIMM) Version 9 | 3

Acknowledgments

Our thanks to the 120 executives from the world-class software security initiatives we studied from around
the world to create BSIMM9, including those who choose to remain anonymous.

Our thanks also to the more than 90 individuals who helped gather the data for BSIMM. In particular, we
thank Mike Doyle, Nabil Hannan, Jason Hills, Brenton Kohler, Iman Louis, Nick Murison, Alistair Nash, Kevin
Nassery, Denis Sheridan, and Mike Ware. In addition, a special thank you to Kathy Clark-Fisher, whose
behind-the-scenes work keeps the BSIMM science project, conferences, and community on track.

Data for the BSIMM were captured by Synopsys. Resources for data analysis were provided by Oracle.
BSIMM1–BSIMM3 were authored by Gary McGraw, Ph.D., Brian Chess, Ph.D., and Sammy Migues.
BSIMM4–BSIMM8 were authored by Gary McGraw, Ph.D., Sammy Migues, and Jacob West.

Adobe
Aetna
Alibaba
Amgen
ANDA
Autodesk
Axway
Bank of America
Betfair
BMO Financial Group
Black Duck Software
Black Knight Financial Services
Box
Canadian Imperial Bank of
Commerce
Capital One
City National Bank
Cisco
Citigroup
Citizen’s Bank
Comerica Bank
Cryptography Research, a
division of Rambus
Dahua
Depository Trust & Clearing
Corporation

Ellucian
Experian
F-Secure
Fannie Mae
Fidelity
Freddie Mac
General Electric
Genetec
Global Payments
Highmark Health Solutions
Horizon Healthcare Services,
Inc.
HSBC
Independent Health
iPipeline
Johnson & Johnson
JPMorgan Chase & Co.
Lenovo
LGE
McKesson
Medtronic
Morningstar
Navient
NCR
NetApp

NewsCorp
NVIDIA
NXP Semiconductors N.V.
PayPal
Principal Financial Group
Qualcomm
Royal Bank of Canada
Scientific Games
Sony Mobile
Splunk
Synopsys SIG
Target
TD Ameritrade
The Advisory Board
The Home Depot
The Vanguard Group
Trainline
Trane
U.S. Bank
Veritas
Verizon
Wells Fargo
Zendesk
Zephyr Health

4 | Building Security in Maturity Model (BSIMM) Version 9

BSIMM9 Table of Contents

Prologue .. 5

1. Part One

a. Introduction ... 9
• History
• BSIMM9
• Audience
• Method
• Participating Firms

b. BSIMM9 Structure.. 13
• The Software Security Framework
• The BSIMM9 Skeleton

c. Putting BSIMM9 to Use 22
• What BSIMM9 Tells Us
• Measuring Your Firm with BSIMM9

d. BSIMM9 Analysis ... 29
• BSIMM Over Time
• BSIMM and Industry Verticals
• BSIMM as a Longitudinal Study
• Emerging Trends in the BSIMM Data

e. BSIMM Community41

2. Part Two

a. Roles in a Software Security Initiative 42
• Executive Leadership
• Software Security Group (SSG)
• Satellite
• Everybody Else

b. BSIMM9 Activities 45
• GOVERNANCE: Strategy & Metrics (SM)
• GOVERNANCE: Compliance & Policy (CP)
• GOVERNANCE: Training (T)
• INTELLIGENCE: Attack Models (AM)
• INTELLIGENCE: Security Features & Design (SFD)
• INTELLIGENCE: Standards & Requirements (SR)
• SSDL TOUCHPOINTS: Architecture Analysis (AA)
• SSDL TOUCHPOINTS: Code Review (CR)
• SSDL TOUCHPOINTS: Security Testing (ST)
• DEPLOYMENT: Penetration Testing (PT)
• DEPLOYMENT: Software Environment (SE)
• DEPLOYMENT: Configuration Management &

Vulnerability Management (CMVM)

3. Appendix

a. Adjusting BSIMM8 for BSIMM9 72

b. 116 BSIMM Activities at a Glance 73

BSIMM9 List of Tables

BSIMM Terminology ...12
Software Security Framework ...13
BSIMM Skeleton ..15
BSIMM9 Scorecard ..23
Twelve Core Activities ...24
BSIMM9 Scorecard for FakeFirm ...27
BSIMM Numbers Over Time ..29
Vertical Comparison Scorecard ...34
Longitudinal Scorecard ..39

BSIMM9 List of Figures

Earth Spider Chart ..25
BSIMM9 Score Distribution ..26
Earth vs. FakeFirm Spider Chart ..28
Cloud vs. Internet of Things
 vs. ISV Spider Chart ..30
Insurance vs. Healthcare
 vs. Financial Spider Chart ..31
Cloud vs. Healthcare Spider Chart32
Retail vs. Earth Spider Chart ..33
Round 1 Earth vs. Round 2 Earth Spider Chart 39
Round 1 Earth vs. Round 3 Earth Spider Chart 40

Building Security in Maturity Model (BSIMM) Version 9 | 5

PROLOGUE

What’s New in BSIMM?
Dr. Gary McGraw, VP SECURITY TECHNOLOGY, SYNOPSYS

The BSIMM project is a de facto standard for assessing (and then improving) software security
initiatives, and BSIMM9 is the culmination of a decade of objective, observation-based work in
the field. Some of our more interesting findings include the following:

Cloud Transformation: Three new activities have been added to the BSIMM model that clearly
show that software security in the cloud is becoming mainstream. Furthermore, activities
observed among independent software vendors, Internet of Things companies, and cloud firms
(three of our most distinct verticals) have begun to converge, suggesting that common cloud
architectures require similar software security approaches.

Retail: A new vertical emerged in the BSIMM data pool. Software security initiatives are
maturing relatively quickly as new models focused on e-commerce become critical to sustaining
a healthy business.

Population Growth: The BSIMM now includes data from 120 firms; the number of developers it
covers grew by 43 percent, and the number of software security practitioners it measures grew
by 65 percent.

BSIMM9 incorporates the largest set of data collected about software security anywhere. By
measuring your firm with the BSIMM measuring stick, you can directly compare and contrast
your security approach to some of the best firms in the world.

6 | Building Security in Maturity Model (BSIMM) Version 9

It Takes a Community to Raise the Bar
Sammy Migues, PRINCIPAL SCIENTIST, SYNOPSYS

The industry as a whole and our community in particular have made great strides in the field of
software security. Over the past 25 years, there have been fantastic improvements in design,
language features, compilers, frameworks, protocols, and encryption. Tools help us write better
code on the fly and find hundreds of security defects with relative ease. Organizational and
process approaches create streamlined teams that can more easily respond to change. Every
day, I meet people truly dedicated to software security improvement.

And yet, it seems as though the process of creating secure software and keeping it secure isn’t
significantly easier today.

The technology is often hard to use, introduces friction in automated processes, requires
headcount to achieve the desired effectiveness, and improves much more slowly than software
evolves. From a consumer perspective, the vendor marketplace is fragmented; you have to
know exactly what you want so that you can get the best parts from multiple vendors and
assemble them yourself. Tool output is often useful only to those who already know the answer,
not to the people who don’t understand security issues.

Moreover, processes are in constant flux. There is debt in nearly every organization, with
approaches built for waterfall ecosystems being molded into agile forms or DevOps shapes.
Increasingly, these processes are being stretched vanishingly thin into CI/CD toolchains. CI/CD
requires automation in a way that waterfall never did. DevOps is a cultural change that can’t be
solved with any amount of incremental procedural alteration—in fact, improvements from agile
processes often result in demand for even more output, and many business processes related
to software value streams frequently have to be rebuilt from scratch.

In the midst of this turmoil, developers are expected to increase their output, application
security architects are expected to create secure designs on the first try (and have them remain
secure for years at a time), and testers are alternately expected to create huge test suites by
knowing everything about the code and to just babysit the tools. More people are seeing their
primary responsibilities automated away into technology that has none of the discretion that
comes from years of experience.

Meanwhile, the bad guys are getting better, too. And did anyone notice that budgets are often
tighter than we’d prefer?

This is all just a normal Tuesday in our industry. Things change. We react and improve. We’re
really good at it, and we continue to attract people to the profession. We’ve had 167 companies
in our BSIMM community, each with a real, functioning software security initiative (SSI)
addressing risk in software portfolios that often include hundreds or thousands of applications
being worked on by thousands of developers. These SSIs deal with all this change—both from
internal and external drivers—by creating their own technical solutions from a patchwork of
open source and commercial tools. They integrate their security functions more tightly with
development and operations to form new groups with shared objectives. They respond to
changing definitions of security, privacy, and partner expectations with tighter integration into
software requirements. Most importantly, these SSIs are real people who go to work every day
and interact with thousands of other people to make a real difference in the software security
world. They do a great job responding to everything going around them, and the BSIMM
numbers show it.

Building Security in Maturity Model (BSIMM) Version 9 | 7

“Those who cannot

remember the past are

condemned to repeat it.”
—George Santayana

A Decade of Software Security
Jacob West, VICE PRESIDENT OF CLOUD OPERATIONS, ORACLE

A decade ago, when the BSIMM was just the glimmer of an idea in the eyes of its creators, I
was busy building technology designed to help organizations practice software security more
effectively. Most firms that were aware of software security were plagued with insecurity about
the level and type of investment they should make. Were they prioritizing their investments in
the right way? Were they using enough technology? Too much technology? Many early leaders
staked their own professional success on making the right choices, so they wondered what the
future would hold both for the field and for their own careers.

Software security as a field was still in its fledgling stages at that time, and the only way to gauge
the maturity of any given initiative was to hold it up against those in other organizations. Some
firms published prescriptive guidance, like the Microsoft Security Development Lifecycle, but
such efforts were too tightly coupled with their organization’s way of developing software to
serve as useful yardsticks for others. Small pockets of software security trailblazers learned from
and shared with one another through ad hoc communities, but this approach created insular
groups that were difficult to join and nearly impossible to scale.

Practitioners knew that technology investments such
as static analysis could require years to implement
at enterprise scale and were leery of making
investments that might fail to provide adequate
return. One question came up again and again: What
would the state of the art in tooling for software
security look like in a decade? At the time, I enjoyed
pontificating that many of the specialized capabilities
being developed would be subsumed by generic
technologies, like compilers, integrated development
environments, and even new languages.

Fast forward ten years and I have both good news and bad news. Despite my youthful optimism,
most technology designed to help with software security remains highly specialized. This means
that organizations still face tough questions around how and when to deploy tools as part of
their software security initiatives. However, armed with the BSIMM, they no longer suffer the
uncertainty of answering those questions in a near vacuum.

The BSIMM was born out of necessity. The industry needed a yardstick for software security, not
only to measure an organization’s current state, but, more importantly, to govern investment
over time. As the BSIMM enters its second decade, I firmly believe that its greatest value is as a
historical document. Activities that were once rare and indicative of great maturity are now table
stakes. Others have fallen by the wayside. And, perhaps most excitingly, readers can track new
activities as they are introduced and adopted.

Through the raw data collected from 120 firms, BSIMM9 readers can not only understand how
their organizations compare to their peers today, they can also understand how investment
in software security has evolved over time. This historical understanding can in turn help their
organizations predict where the state of the art will be in the future and then gauge their
investments accordingly. As George Santayana put it, “Those who cannot remember the past are
condemned to repeat it,” and the BSIMM is the best way to understand where software security
has been as well as where it’s going.

8 | Building Security in Maturity Model (BSIMM) Version 9

PART ONE
The Building Security in Maturity Model (BSIMM, pronounced “bee simm”) is a study of software security
initiatives. By quantifying the practices of many different organizations, we can describe the common ground
shared by many as well as the variations that make each unique. Our aim is to help the wider software security
community plan, carry out, and measure initiatives of their own. The BSIMM is not a “how to” guide, nor is it a
one-size-fits-all prescription. Instead, the BSIMM is a reflection of the current state of software security.

We begin with a brief description of the function and importance of a software security initiative. We then
explain our model and the method we use for quantifying the state of an initiative. Since the BSIMM study
began in 2008, we have studied 167 firms, which comprise 389 distinct measurements (some firms use the
BSIMM to measure each of their business units and some have been measured more than once). To ensure
the continued relevance of the data we report, we excluded from BSIMM9 measurements older than 42
months. The current data set comprises 320 distinct measurements collected from 120 firms. Thanks to repeat
measurements, not only do we report on current practices but also on the ways in which some initiatives have
evolved over a period of years.

Later in this document, we give a detailed explanation
of the key roles in a software security initiative, the 116
activities that now comprise our model, and a summary
of the raw data we have collected. We have reviewed the
description of each activity for BSIMM9.

Our work with the BSIMM shows that measuring a
firm’s software security initiative is both possible and
extremely useful. Organizations use their BSIMM
measurements to plan, structure, and execute the
evolution of a software security initiative. Over time,
firms participating in the BSIMM show measurable
improvement in their software security initiatives.

Over time, firms

participating in

the BSIMM

show measurable

improvement in their

software security

initiatives.

Building Security in Maturity Model (BSIMM) Version 9 | 9

Introduction

History
In the late 1990s, software security began to flourish as a discipline separate from computer and network
security. Researchers began to put more emphasis on studying the ways in which a programmer can contribute
to or unintentionally undermine the security of a computer system and started asking some specific questions:
What kinds of bugs and flaws lead to security problems? How can we identify problems systematically?

By the middle of the following decade, there was an emerging consensus that building secure software required
more than just smart individuals toiling away. Getting security right means being involved in the software
development process, even as the process evolves.

Since then, practitioners have come to learn that
process and developer tools alone are insufficient.
Software security encompasses business, social,
and organizational aspects as well. We use the term
software security initiative (SSI) to refer to all the
activities undertaken for the purpose of building
secure software.

BSIMM9
The purpose of the BSIMM is to quantify the activities
carried out by real software security initiatives.
Because these initiatives use different methodologies
and different terminology, the BSIMM requires a
framework that allows us to describe all the initiatives
in a uniform way. Our software security framework
(SSF) and activity descriptions provide a common vocabulary for explaining the salient elements of an SSI,
thereby allowing us to compare initiatives that use different terms, operate at different scales, exist in different
vertical markets, or create different work products.

We classify our work as a maturity model because improving software security almost always means changing
the way an organization works, which doesn’t happen overnight. We understand that not all organizations
need to achieve the same security goals, but we believe all organizations can benefit from using the same
measuring stick.

BSIMM9 is the ninth major version of the model. It includes updated activity descriptions, data from 120 firms
in multiple vertical markets, and a longitudinal study.

Audience
The BSIMM is meant for use by anyone responsible for creating and executing an SSI. We have observed that
successful SSIs are typically run by a senior executive who reports to the highest levels in an organization.
These executives lead an internal group that we call the software security group (SSG), which is charged with
directly executing or facilitating the activities described in the BSIMM. The BSIMM is written with the SSG and
SSG leadership in mind.

BSIMM quantifies

the activities carried

out by real software

security initiatives.

10 | Building Security in Maturity Model (BSIMM) Version 9

We expect readers to be familiar with the software security literature. You can become familiar with many
concepts by reading Software Security: Building Security In. The BSIMM does not attempt to explain software
security basics, describe its history, or provide references to the ever-expanding literature. Succeeding with
the BSIMM without becoming familiar with the literature is unlikely.

Method
We built the first version of the BSIMM a decade ago (in Fall of 2008) as follows:

• We relied on our own knowledge of software security practices to create the SSF. (We present the
framework on page 13.)

• We conducted a series of in-person interviews with nine executives in charge of SSIs. From these
interviews, we identified a set of common activities, which we organized according to the SSF.

• We then created scorecards for each of the nine initiatives that show which activities the initiatives carry
out. To validate our work, we asked each participating firm to review the framework, the practices, and the
scorecard we created for their initiative.

The BSIMM is a data-driven model that evolves over time. We have added, deleted, and adjusted the levels of
various activities based on the data observed as the project has evolved. To preserve backward compatibility,
we make all changes by adding new activity labels to the model, even when an activity has simply changed
levels. We make changes by considering outliers both in the model itself and in the levels we assigned to
various activities in the 12 practices we describe later. We use the results of an intralevel standard deviation
analysis to determine which outlier activities to move between levels, focusing on changes that minimize
standard deviation in the average number of observed activities at each level.

We use an in-person interview technique to conduct BSIMM assessments, done with a total of 167 firms so far.
In 35 cases, we assessed the SSG and one or more business units as part of creating the corporate SSI view.
In some of those cases, we used one aggregated scorecard, whereas in others, we used multiple scorecards
for the SSG and each business unit. However, each firm is represented by only one set of data in the model
published here. The following table shows changes in the data pool over time.

For BSIMM9, we added 22 firms and removed 11, resulting in a data pool of 120 firms. We used the resulting
observation counts to refine the set of activities and their placement in the framework.

We have also conducted a second complete set of interviews with 42 of the current participating firms in
order to study how their initiatives have changed over time. Twenty firms have undertaken three BSIMM
assessments, seven have done four BSIMM assessments, and one has had five BSIMM assessments.

DATA POOL OVER TIME

ITERATION NUMBER OF FIRMS AGED OUT TOTAL NUMBER OF FIRMS

BSIMM-V 5 67

BSIMM6 21 78

BSIMM7 13 95

BSIMM8 5 109

BSIMM9 11 120

http://www.swsec.com/

Building Security in Maturity Model (BSIMM) Version 9 | 11

We hold the scorecards for individual firms in
confidence, but we publish aggregate data describing
the number of times we have observed each activity (see
page 23). We also publish observations about subsets
(such as industry verticals) when our sample size for the
subset is large enough to guarantee anonymity.

As a descriptive model, the only goal of the BSIMM is to observe and report. We like to say that we wandered
off into the jungle to see what we could see and discovered that “monkeys eat bananas in X of the Y jungles we
visited.” Note that the BSIMM does not report “you should only eat yellow bananas,” “do not run while eating
a banana,” “thou shalt not steal thy neighbors’ bananas,” or any other value judgments. Simple observations,
simply reported.

Our “just the facts” approach is hardly novel in science and engineering, but in the realm of software security,
it has not previously been applied on this scale. Other work has either described the experience of a single
organization or offered prescriptive guidance based purely on a combination of personal experience and opinion.

Participating Firms
The 120 participating organizations are drawn from eight well-represented verticals (with some overlap):
financial services (50), independent software vendors (42), technology (22), healthcare (19), cloud (17), Internet
of Things (16), insurance (10), and retail (10). Verticals with lower representation in the BSIMM population
include telecommunications, security, and energy. See the Acknowledgments section on page 3 for a list of
companies that graciously agreed to be identified.

On average, the 120 participating firms have practiced software security for 4.13 years at the time of the
current assessment (ranging from less than a year to 19 years as of June 2018). All 120 firms agree that the
success of their initiative hinges on their SSG, an internal group devoted to software security. SSG size on
average is 13.3 people (smallest 1, largest 160, median 5.5), with an average satellite group of developers,
architects, and people in the organization directly engaged in and promoting software security consisting of
52.4 people (smallest 0, largest 2,250, median 0). The average number of developers among our participants
was 3,463 people (smallest 20, largest 45,000, median 900), yielding an average percentage of SSG to
development of 1.33% (median 0.67%).

All told, the BSIMM describes the work of 1,600 SSG members working with a satellite of 6,291 people to
secure the software developed by 415,598 developers as part of a combined portfolio of 135,881 applications.

Simple observations,

simply reported.

12 | Building Security in Maturity Model (BSIMM) Version 9

BSIMM Terminology
Nomenclature has always been a problem in computer security, and software security is no
exception. Several terms used in the BSIMM have particular meaning for us. The following list
highlights some of the most important terms used throughout this document:

Activity: Actions carried out or facilitated by the software security group (SSG) as part of a
practice. Activities are divided into three levels in the BSIMM.

Domain: One of the four categories our framework is divided into: governance, intelligence,
secure software development lifecycle (SSDL) touchpoints, and deployment. See the SSF
section on page 13.

Practice: BSIMM activities are broken down into 12 categories or practices. Each domain in
the software security framework (SSF) has three practices, and the activities in each practice
are divided into an additional three levels. See the SSF section on page 13.

Satellite: A group of interested and engaged developers, architects, software managers,
testers, and people in similar roles who have a natural affinity for software security and are
organized and leveraged by a software security group (SSG).

Secure Software Development Lifecycle (SSDL): Any software lifecycle with integrated
software security checkpoints and activities.

Software Security Framework (SSF): The basic structure underlying the BSIMM, comprising
12 practices divided into four domains. See the SSF section on page 13.

Software Security Group (SSG): The internal group charged with carrying out and facilitating
software security. According to our observations, the first step of a software security initiative
(SSI) is to form an SSG.

Software Security Initiative (SSI): An organization-wide program to instill, measure, manage,
and evolve software security activities in a coordinated fashion. Also known in the literature
as an Enterprise Software Security Program (see chapter 10 of Software Security: Building
Security In).

http://www.swsec.com/
http://www.swsec.com/

Building Security in Maturity Model (BSIMM) Version 9 | 13

BSIMM9 Structure
The BSIMM is organized as a set of 116 activities in a framework.

The Software Security Framework
The graphic below shows the SSF used to organize the 116 BSIMM activities. Twelve practices are organized
into four domains.

The four domains:

Governance. Practices that help organize, manage, and measure a software security
initiative. Staff development is also a central governance practice.

Intelligence. Practices that result in collections of corporate knowledge used in carrying out
software security activities throughout the organization. Collections include both proactive security
guidance and organizational threat modeling.

</>
SSDL Touchpoints. Practices associated with analysis and assurance of particular
software development artifacts and processes. All software security methodologies
include these practices.

Deployment. Practices that interface with traditional network security and software
maintenance organizations. Software configuration, maintenance, and other environment
issues have direct impact on software security.

The 12 practices:

Governance
1. Strategy & Metrics (SM)

2. Compliance & Policy (CP)

3. Training (T)

Intelligence
4. Attack Models (AM)

5. Security Features & Design (SFD)

6. Standards & Requirements (SR)

SSDL Touchpoints
7. Architecture Analysis (AA)

8. Code Review (CR)

9. Security Testing (ST)

Deployment
10. Penetration Testing (PT)

11. Software Environment (SE)

12. Configuration Management & Vulnerability Management (CMVM)

14 | Building Security in Maturity Model (BSIMM) Version 9

Building Security in Maturity Model (BSIMM) Version 9 | 15

Governance

The BSIMM9 Skeleton
The BSIMM skeleton provides a way to view the model at a glance and is useful when assessing an SSI. The
skeleton is shown below, organized by practices and levels. It also includes the percentage of firms (out of
120) performing that activity in their own SSI. More complete descriptions of the activities, examples, and term
definitions are available in Part Two of this document.

STRATEGY & METRICS (SM)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Publish process (roles, responsibilities, plan), evolve as necessary. SM1.1 59.2

Create evangelism role and perform internal marketing. SM1.2 55.0

Educate executives. SM1.3 55.8

Identify gate locations, gather necessary artifacts. SM1.4 84.2

LEVEL 2

Publish data about software security internally. SM2.1 39.2

Enforce gates with measurements and track exceptions. SM2.2 35.0

Create or grow a satellite. SM2.3 36.7

Require security sign-off. SM2.6 32.5

LEVEL 3

Use an internal tracking application with portfolio view. SM3.1 12.5

Run an external marketing program. SM3.2 5.8

Identify metrics and use them to drive budgets. SM3.3 15.0

COMPLIANCE & POLICY (CP)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Unify regulatory pressures. CP1.1 65.8

Identify PII obligations. CP1.2 84.2

Create policy. CP1.3 55.0

Table continued on next page >

16 | Building Security in Maturity Model (BSIMM) Version 9

Governance continued...

COMPLIANCE & POLICY (CP) ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 2

Identify PII data inventory. CP2.1 32.5

Require security sign-off for compliance-related risk. CP2.2 31.7

Implement and track controls for compliance. CP2.3 35.8

Include software security SLAs in all vendor contracts. CP2.4 35.0

Ensure executive awareness of compliance and privacy obligations. CP2.5 39.2

LEVEL 3

Create a regulator compliance story. CP3.1 17.5

Impose policy on vendors. CP3.2 10.0

Drive feedback from SSDL data back to policy. CP3.3 4.2

TRAINING (T)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Provide awareness training. T1.1 66.7

Deliver role-specific advanced curriculum (tools, technology stacks,
and bug parade). T1.5 28.3

Create and use material specific to company history. T1.6 21.7

Deliver on-demand individual training. T1.7 39.2

LEVEL 2

Enhance satellite through training and events. T2.5 17.5

Include security resources in onboarding. T2.6 19.2

LEVEL 3

Reward progression through curriculum (certification or HR). T3.1 3.3

Provide training for vendors or outsourced workers. T3.2 6.7

Host external software security events. T3.3 7.5

Require an annual refresher. T3.4 7.5

Establish SSG office hours. T3.5 4.2

Identify a satellite through training. T3.6 2.5

Building Security in Maturity Model (BSIMM) Version 9 | 17

Intelligence

ATTACK MODELS (AM)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Create a data classification scheme and inventory. AM1.2 62.5

Identify potential attackers. AM1.3 31.7

Gather and use attack intelligence. AM1.5 44.2

LEVEL 2

Build attack patterns and abuse cases tied to potential attackers. AM2.1 8.3

Create technology-specific attack patterns. AM2.2 8.3

Build and maintain a top N possible attacks list. AM2.5 13.3

Collect and publish attack stories. AM2.6 11.7

Build an internal forum to discuss attacks. AM2.7 9.2

LEVEL 3

Have a science team that develops new attack methods. AM3.1 3.3

Create and use automation to mimic attackers. AM3.2 1.7

SECURITY FEATURES & DESIGN (SFD)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Build and publish security features. SFD1.1 79.2

Engage SSG with architecture. SFD1.2 58.3

LEVEL 2

Build secure-by-design middleware frameworks and common libraries. SFD2.1 28.3

Create SSG capability to solve difficult design problems. SFD2.2 38.3

LEVEL 3

Form a review board or central committee to approve
and maintain secure design patterns. SFD3.1 7.5

Require use of approved security features and frameworks. SFD3.2 7.5

Find and publish mature design patterns from the organization. SFD3.3 1.7

18 | Building Security in Maturity Model (BSIMM) Version 9

Intelligence continued...

STANDARDS & REQUIREMENTS (SR)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Create security standards. SR1.1 62.5

Create a security portal. SR1.2 65.0

Translate compliance constraints to requirements. SR1.3 63.3

LEVEL 2

Create a standards review board. SR2.2 31.7

Create standards for technology stacks. SR2.3 19.2

Identify open source. SR2.4 32.5

Create SLA boilerplate. SR2.5 24.2

LEVEL 3

Control open source risk. SR3.1 14.2

Communicate standards to vendors. SR3.2 8.3

Use secure coding standards. SR3.3 8.3

Building Security in Maturity Model (BSIMM) Version 9 | 19

SSDL Touchpoints</>

ARCHITECTURE ANALYSIS (AA)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Perform security feature review. AA1.1 84.2

Perform design review for high-risk applications. AA1.2 27.5

Have SSG lead design review efforts. AA1.3 22.5

Use a risk questionnaire to rank applications. AA1.4 47.5

LEVEL 2

Define and use AA process. AA2.1 12.5

Standardize architectural descriptions (including data flow). AA2.2 11.7

LEVEL 3

Have software architects lead design review efforts. AA3.1 3.3

Drive analysis results into standard architecture patterns. AA3.2 1.7

Make the SSG available as an AA resource or mentor. AA3.3 2.5

CODE REVIEW (CR)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Have SSG perform ad hoc review. CR1.2 68.3

Use automated tools along with manual review. CR1.4 63.3

Make code review mandatory for all projects. CR1.5 33.3

Use centralized reporting to close the knowledge loop and drive training. CR1.6 36.7

LEVEL 2

Assign tool mentors. CR2.5 23.3

Use automated tools with tailored rules. CR2.6 16.7

Use a top N bugs list (real data preferred). CR2.7 20.8

LEVEL 3

Build a factory. CR3.2 3.3

Build a capability for eradicating specific bugs from the entire codebase. CR3.3 0.8

Automate malicious code detection. CR3.4 3.3

Enforce coding standards. CR3.5 2.5

20 | Building Security in Maturity Model (BSIMM) Version 9

SSDL Touchpoints continued...</>

SECURITY TESTING (ST)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Ensure QA supports edge/boundary value condition testing. ST1.1 83.3

Drive tests with security requirements and security features. ST1.3 73.3

LEVEL 2

Integrate black-box security tools into the QA process. ST2.1 25.0

Share security results with QA. ST2.4 11.7

Include security tests in QA automation. ST2.5 10.0

Perform fuzz testing customized to application APIs. ST2.6 10.8

LEVEL 3

Drive tests with risk analysis results. ST3.3 3.3

Leverage coverage analysis. ST3.4 2.5

Begin to build and apply adversarial security tests (abuse cases). ST3.5 2.5

Building Security in Maturity Model (BSIMM) Version 9 | 21

Deployment

PENETRATION TESTING (PT)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Use external penetration testers to find problems. PT1.1 87.5

Feed results to the defect management and mitigation system. PT1.2 74.2

Use penetration testing tools internally. PT1.3 61.7

LEVEL 2

Provide penetration testers with all available information. PT2.2 21.7

Schedule periodic penetration tests for application coverage. PT2.3 17.5

LEVEL 3

Use external penetration testers to perform deep-dive analysis. PT3.1 8.3

Have the SSG customize penetration testing tools and scripts. PT3.2 5.8

SOFTWARE ENVIRONMENT (SE)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Use application input monitoring. SE1.1 48.3

Ensure host and network security basics are in place. SE1.2 86.7

LEVEL 2

Publish installation guides. SE2.2 32.5

Use code signing. SE2.4 25.8

LEVEL 3

Use code protection. SE3.2 14.2

Use application behavior monitoring and diagnostics. SE3.3 3.3

Use application containers. SE3.4 9.2

Use orchestration for containers and virtualized environments. SE3.5 0.0

Enhance application inventory with operations bill of materials. SE3.6 0.0

Ensure cloud security basics. SE3.7 0.0

22 | Building Security in Maturity Model (BSIMM) Version 9

Putting BSIMM9 to Use
The BSIMM describes 116 activities that any organization can put into practice. The activities are structured
in terms of the SSF, which identifies 12 practices grouped into four domains.

What BSIMM9 Tells Us
The BSIMM data yield very
interesting analytical results. The
BSIMM9 scorecard on the following
page shows the number of times
each of the 116 activities briefly
outlined in the BSIMM skeleton was
observed in the BSIMM9 data. These
are the highest-resolution BSIMM
data that are published.

Deployment continued...

CONFIGURATION MANAGEMENT & VULNERABILITY MANAGEMENT (CMVM)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Create or interface with incident response. CMVM1.1 84.2

Identify software defects found in operations monitoring and feed them
back to development. CMVM1.2 85.0

LEVEL 2

Have emergency codebase response. CMVM2.1 68.3

Track software bugs found in operations through the fix process. CMVM2.2 72.5

Develop an operations inventory of applications. CMVM2.3 47.5

LEVEL 3

Fix all occurrences of software bugs found in operations. CMVM3.1 4.2

Enhance the SSDL to prevent software bugs found in operations. CMVM3.2 5.8

Simulate software crises. CMVM3.3 7.5

Operate a bug bounty program. CMVM3.4 10.8

“The BSIMM is a fundamental resource

for those looking for solid foundations or

improvement for their software security

initiative. It is a consistent, systematic

approach to classifying and understanding

real data about actual activities of security-

conscious organizations worldwide.”

—Iván Arce, CTO, Quarkslab

Building Security in Maturity Model (BSIMM) Version 9 | 23

BSIMM9 SCORECARD

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY BSIMM9 FIRMS

(out of 120)
ACTIVITY BSIMM9 FIRMS

(out of 120)
ACTIVITY BSIMM9 FIRMS

(out of 120)
ACTIVITY BSIMM9 FIRMS

(out of 120)

Strategy & Metrics Attack Models Architecture Analysis Penetration Testing
[SM1.1] 71 [AM1.2] 75 [AA1.1] 101 [PT1.1] 105

[SM1.2] 66 [AM1.3] 38 [AA1.2] 33 [PT1.2] 89

[SM1.3] 67 [AM1.5] 53 [AA1.3] 27 [PT1.3] 74

[SM1.4] 101 [AM2.1] 10 [AA1.4] 57 [PT2.2] 26

[SM2.1] 47 [AM2.2] 10 [AA2.1] 15 [PT2.3] 21

[SM2.2] 42 [AM2.5] 16 [AA2.2] 14 [PT3.1] 10

[SM2.3] 44 [AM2.6] 14 [AA3.1] 4 [PT3.2] 7

[SM2.6] 39 [AM2.7] 11 [AA3.2] 2

[SM3.1] 15 [AM3.1] 4 [AA3.3] 3

[SM3.2] 7 [AM3.2] 2

[SM3.3] 18

Compliance & Policy Security Features & Design Code Review Software Environment
[CP1.1] 79 [SFD1.1] 95 [CR1.2] 82 [SE1.1] 58

[CP1.2] 101 [SFD1.2] 70 [CR1.4] 76 [SE1.2] 104

[CP1.3] 66 [SFD2.1] 34 [CR1.5] 40 [SE2.2] 39

[CP2.1] 39 [SFD2.2] 46 [CR1.6] 44 [SE2.4] 31

[CP2.2] 38 [SFD3.1] 9 [CR2.5] 28 [SE3.2] 17

[CP2.3] 43 [SFD3.2] 9 [CR2.6] 20 [SE3.3] 4

[CP2.4] 42 [SFD3.3] 2 [CR2.7] 25 [SE3.4] 11

[CP2.5] 47 [CR3.2] 4 [SE3.5] 0

[CP3.1] 21 [CR3.3] 1 [SE3.6] 0

[CP3.2] 12 [CR3.4] 4 [SE3.7] 0

[CP3.3] 5 [CR3.5] 3

Training Standards & Requirements Security Testing Config. Mgmt. & Vuln. Mgmt.

[T1.1] 80 [SR1.1] 75 [ST1.1] 100 [CMVM1.1] 101

[T1.5] 34 [SR1.2] 78 [ST1.3] 88 [CMVM1.2] 102

[T1.6] 26 [SR1.3] 76 [ST2.1] 30 [CMVM2.1] 82

[T1.7] 47 [SR2.2] 38 [ST2.4] 14 [CMVM2.2] 87

[T2.5] 21 [SR2.3] 23 [ST2.5] 12 [CMVM2.3] 57

[T2.6] 23 [SR2.4] 39 [ST2.6] 13 [CMVM3.1] 5

[T3.1] 4 [SR2.5] 29 [ST3.3] 4 [CMVM3.2] 7

[T3.2] 8 [SR3.1] 17 [ST3.4] 3 [CMVM3.3] 9

[T3.3] 9 [SR3.2] 10 [ST3.5] 3 [CMVM3.4] 13

[T3.4] 9 [SR3.3] 10

[T3.5] 5

[T3.6] 3

24 | Building Security in Maturity Model (BSIMM) Version 9

In the table on page 23, we also identified the most common activity in each practice (shown in yellow in the
scorecard). These 12 activities were observed in at least 75 (62%) of the 120 firms we studied, and they appear
in the table below. Although we can’t directly conclude that these 12 activities are necessary for all SSIs, we can
say with confidence that these activities are commonly found in highly successful initiatives. This suggests that
if you are working on an initiative of your own, you should consider these 12 activities particularly carefully.

TWELVE CORE ACTIVITIES THAT “EVERYBODY” DOES

ACTIVITY DESCRIPTION

[SM1.4] Identify gate locations and gather necessary artifacts.

[CP1.2] Identify PII obligations.

[T1.1] Provide awareness training.

[AM1.2] Create a data classification scheme and inventory.

[SFD1.1] Build and publish security features.

[SR1.2] Create a security portal.

[AA1.1] Perform security feature review.

[CR1.2] Have SSG perform ad hoc review.

[ST1.1] Ensure QA supports edge/boundary value condition testing.

[PT1.1] Use external penetration testers to find problems.

[SE1.2] Ensure host and network security basics are in place.

[CMVM1.2] Identify software bugs found in operations monitoring and feed them back to development.

We created spider charts by noting the highest-level activity observed for each practice per BSIMM firm (a
“high-water mark”) and then averaging these values over a group of firms to produce 12 numbers (one for
each practice). The resulting spider chart plots these values on 12 spokes corresponding to the 12 practices.
Note that level 3 (the outside edge) is considered more mature than level 0 (the center point). Other, more
sophisticated analyses are possible, of course.

Building Security in Maturity Model (BSIMM) Version 9 | 25

Compliance & Policy

Strategy & Metrics

Architecture Analysis

Standards & Requirements

Training

Security Features & Design

Attack Models

Configuration Mgmt. & Vulnerability Mgmt.

Code Review

Software Environment

Security Testing

Penetration Testing

Earth (120)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

EARTH SPIDER CHART

By computing these high-water mark values and an observed score for each firm in the study, we can also
compare relative and average maturity for one firm against the others. The range of observed scores in the
current data pool is [5, 79].

The graph on the next page shows the distribution of scores among the population of 120 participating firms
(which we call Earth). To create this graph, we divided the scores into six bins. As you can see, the scores
represent a slightly skewed bell curve. We also plotted the average age of the firms’ SSIs in each bin as the
orange line on the graph. In general, firms where more BSIMM activities have been observed have older SSIs.

26 | Building Security in Maturity Model (BSIMM) Version 9

5

0

10

15

20

30

25

40

45

50

35

2.2

4.7

7.9
6.9

8.5

1.0

F
IR

M
S

0-15 16-30 31-45 46-60 61-75 76-116

Earth (120) - With average SSG age (in years) per score bucket

BSIMM9 SCORE DISTRIBUTION

We are pleased that the BSIMM study continues to grow year after year. The data set we report on here is over
35 times the size it was for the original publication. Note that once we exceeded a sample size of 30 firms, we
began to apply statistical analysis, yielding statistically significant results.

Measuring Your Firm with BSIMM9
The most important use of the BSIMM is as a measuring stick to determine where your approach currently
stands relative to other firms. You can simply note which activities you already have in place, find them in
the skeleton, determine their levels, and then build your scorecard. A direct comparison of all 116 activities
is perhaps the most obvious use of the BSIMM. This can be accomplished by building your scorecard and
comparing it to the data above.

The scorecard you see on the next page depicts a fake firm that performs 37 BSIMM activities (noted as 1’s
in the FAKEFIRM columns), including seven activities that are the most common in their respective practices
(purple boxes). Note the firm does not perform the most commonly observed activities in the other five
practices (red boxes) and should take some time to determine whether these are necessary or useful to its
overall software security initiative. The BSIMM9 FIRMS columns show the number of observations (currently
out of 120) for each activity, allowing the firm to understand the general popularity of an activity among the
120 BSIMM9 firms.

Building Security in Maturity Model (BSIMM) Version 9 | 27

BSIMM9 SCORECARD FOR: FAKEFIRM | OBSERVATIONS: 37

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM9

FIRMS (120)
FAKEFIRM ACTIVITY

BSIMM9
FIRMS (120)

FAKEFIRM ACTIVITY
BSIMM9

FIRMS (120)
FAKEFIRM ACTIVITY

BSIMM9
FIRMS (120)

FAKEFIRM

Strategy & Metrics Attack Models Architecture Analysis Penetration Testing

[SM1.1] 71 1 [AM1.2] 75 [AA1.1] 101 1 [PT1.1] 105 1

[SM1.2] 66 [AM1.3] 38 [AA1.2] 33 1 [PT1.2] 89 1

[SM1.3] 67 1 [AM1.5] 53 1 [AA1.3] 27 1 [PT1.3] 74

[SM1.4] 101 1 [AM2.1] 10 [AA1.4] 57 [PT2.2] 26 1

[SM2.1] 47 [AM2.2] 10 1 [AA2.1] 15 [PT2.3] 21

[SM2.2] 42 [AM2.5] 16 1 [AA2.2] 14 1 [PT3.1] 10 1

[SM2.3] 44 [AM2.6] 14 1 [AA3.1] 4 [PT3.2] 7

[SM2.6] 39 [AM2.7] 11 [AA3.2] 2

[SM3.1] 15 [AM3.1] 4 [AA3.3] 3

[SM3.2] 7 [AM3.2] 2

[SM3.3] 18

Compliance & Policy Sec. Features & Design Code Review Software Environment

[CP1.1] 79 1 [SFD1.1] 95 [CR1.2] 82 1 [SE1.1] 58

[CP1.2] 101 [SFD1.2] 70 1 [CR1.4] 76 1 [SE1.2] 104 1

[CP1.3] 66 1 [SFD2.1] 34 [CR1.5] 40 [SE2.2] 39 1

[CP2.1] 39 [SFD2.2] 46 [CR1.6] 44 1 [SE2.4] 31

[CP2.2] 38 [SFD3.1] 9 [CR2.5] 28 [SE3.2] 17

[CP2.3] 43 [SFD3.2] 9 [CR2.6] 20 [SE3.3] 4

[CP2.4] 42 [SFD3.3] 2 [CR2.7] 25 [SE3.4] 11

[CP2.5] 47 1 [CR3.2] 4 1 [SE3.5] 0

[CP3.1] 21 [CR3.3] 1 [SE3.6] 0

[CP3.2] 12 [CR3.4] 4 [SE3.7] 0

[CP3.3] 5 [CR3.5] 3

Training Standards & Requirements Security Testing Config. Mgmt. & Vuln. Mgmt.

[T1.1] 80 1 [SR1.1] 75 1 [ST1.1] 100 1 [CMVM1.1] 101 1

[T1.5] 34 [SR1.2] 78 [ST1.3] 88 1 [CMVM1.2] 102

[T1.6] 26 1 [SR1.3] 76 1 [ST2.1] 30 1 [CMVM2.1] 82 1

[T1.7] 47 [SR2.2] 38 1 [ST2.4] 14 [CMVM2.2] 87

[T2.5] 21 [SR2.3] 23 [ST2.5] 12 [CMVM2.3] 57

[T2.6] 23 1 [SR2.4] 39 1 [ST2.6] 13 [CMVM3.1] 5

[T3.1] 4 [SR2.5] 29 [ST3.3] 4 [CMVM3.2] 7

[T3.2] 8 [SR3.1] 17 [ST3.4] 3 [CMVM3.3] 9

[T3.3] 9 [SR3.2] 10 [ST3.5] 3 [CMVM3.4] 13

[T3.4] 9 [SR3.3] 10

[T3.5] 5

[T3.6] 3

LEGEND:

ACTIVITY 116 BSIMM9 activities, shown in 4 domains and 12 practices

BSIMM9 FIRMS count of firms (out of 120) observed performing each activity

the most common activity within a practice

most common activity in practice was not observed in this assessment

1 most common activity in practice was observed in this assessment

a practice where firm’s high-water mark score is below the BSIMM9 average

28 | Building Security in Maturity Model (BSIMM) Version 9

Once you have determined where you stand with activities, you can devise a plan to enhance practices with
other activities included in the BSIMM. By providing actual measurement data from the field, the BSIMM
makes it possible to build a long-term plan for an SSI and track progress against that plan. Note that there’s no
inherent reason to adopt all activities in every level for each practice. Adopt the activities that make sense for
your organization and ignore those that don’t, but revisit those choices periodically.

In our own work using the BSIMM to assess initiatives, we found that creating a spider chart yielding a high-
water mark approach (based on the three levels per practice) is sufficient to obtain a low-resolution feel for
maturity, especially when working with data from a particular vertical.

Compliance & Policy

Strategy & Metrics

Architecture Analysis

Standards & Requirements

Training

Security Features & Design

Attack Models

Configuration Mgmt. & Vulnerability Mgmt.

Code Review

Software Environment

Security Testing

Penetration Testing 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Earth (120) FakeFirm

EARTH VS. FAKE FIRM SPIDER CHART

One meaningful comparison is to chart your own high-water mark against the averages we have published
to see how your initiative stacks up. Above, we have plotted data from the fake firm against the BSIMM Earth
graph. The breakdown of activities into levels for each practice is meant only as a guide. The levels provide a
natural progression through the activities associated with each practice, but it isn’t necessary to carry out all
activities in a given level before moving on to activities at a higher level in the same practice. That said, the
levels we have identified hold water under statistical scrutiny. Level 1 activities (straightforward and simple) are
those that are most commonly observed, Level 2 (more difficult and requiring more coordination) are slightly
less so, and Level 3 (rocket science) are rarely observed.

By identifying activities from each practice that could work for you, and by ensuring proper balance with

Building Security in Maturity Model (BSIMM) Version 9 | 29

respect to domains, you can create a strategic plan for your SSI moving forward. Note that most SSIs are
multiyear efforts with a real budget, mandate, and ownership behind them. Although all initiatives look
different and are tailored to fit a particular organization, all initiatives share common core activities, as
we describe on page 24.

BSIMM9 Analysis
The BSIMM has produced a wealth of real-world data about software security.

BSIMM Over Time
This is the ninth major release of the BSIMM, and the chart below shows how it has grown over the years.
(Recall that our data freshness constraints, introduced with BSIMM-V and later tightened, cause data from
firms with aging measurements to be removed from the data set.) BSIMM9 describes the work of 7,891 SSG
and satellite people working directly in software security, impacting the security efforts of 415,598 developers.

BSIMM NUMBERS OVER TIME

BSIMM9 BSIMM8 BSIMM7 BSIMM6 BSIMM-V BSIMM4 BSIMM3 BSIMM2 BSIMM1

FIRMS 120 109 95 78 67 51 42 30 9

MEASUREMENTS 320 256 237 202 161 95 81 49 9

2ND MEASURES 42 36 30 26 21 13 11 0 0

3RD MEASURES 20 16 15 10 4 1 0 0 0

4TH MEASURES 7 5 2 2 0 0 0 0 0

SSG MEMBERS 1,600 1,268 1,111 1,084 976 978 786 635 370

SATELLITE
MEMBERS

6,291 3,501 3,595 2,111 1954 2039 1750 1150 710

DEVELOPERS 415,598 290,582 272,782 287,006 272,358 218,286 185,316 141,175 67,950

APPLICATIONS 135,881 94,802 87,244 69,750 69,039 58,739 41,157 28,243 3,970

AVG. SSG AGE
(YEARS)

4.13 3.88 3.94 3.98 4.28 4.13 4.32 4.49 5.32

SSG AVG. OF
AVGS

1.33 / 100 1.60 /100 1.61 / 100 1.51 / 100 1.40 / 100 1.95 / 100 1.99 / 100 1.02 / 100 1.13 / 100

FINANCIAL
SERVICES

50 47 42 33 26 19 17 12 4

ISVs 42 38 30 27 25 19 15 7 4

TECH 22 16 14 17 14 13 10 7 2

HEALTHCARE 19 17 15 10

INTERNET
OF THINGS

16 12 12 13

CLOUD 17 16 15

INSURANCE 10 11 10

RETAIL 10

30 | Building Security in Maturity Model (BSIMM) Version 9

BSIMM and Industry Verticals
The spider charts we introduced earlier are also useful for comparing groups of firms from particular industry
verticals. The following graphs show data charted together from verticals well represented in the BSIMM:
financial services (50), independent software vendors (42), healthcare (19), cloud (17), Internet of Things (16),
insurance (10), and retail (10).

Compliance & Policy

Strategy & Metrics

Architecture Analysis

Standards & Requirements

Training

Security Features & Design

Attack Models

Configuration Mgmt. & Vulnerability Mgmt.

Code Review

Software Environment

Security Testing

Penetration Testing

ISV (42 of 120)Cloud (17 of 120) Internet of Things (16 of 120)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CLOUD VS. INTERNET OF THINGS VS. ISV SPIDER CHART

Cloud, Internet of Things, and independent software vendors (ISVs) are three of the most mature verticals
in the BSIMM. On average, cloud firms are noticeably more mature in the Governance practices—Strategy &
Metrics, Compliance & Policy, and Training—compared to the ISVs and Internet of Things firms. By the same
measure, Internet of Things firms show greater maturity in the Security Testing and Software Environment
practices. Despite these obvious differences, there is a great deal of overlap. We hypothesize that technology
stacks and architectures between these three verticals are converging.

Building Security in Maturity Model (BSIMM) Version 9 | 31

Compliance & Policy

Strategy & Metrics

Architecture Analysis

Standards & Requirements

Training

Security Features & Design

Attack Models

Configuration Mgmt. & Vulnerability Mgmt.

Code Review

Software Environment

Security Testing

Penetration Testing

Financial (50 of 120)Healthcare (19 of 120)Insurance (10 of 120)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

INSURANCE VS. HEALTHCARE VS. FINANCIAL SPIDER CHART

Three verticals in the BSIMM operate in highly regulated industries: insurance, healthcare, and financial
services. In our experience, large financial services firms reacted to regulatory changes and started their SSIs
much earlier than insurance and healthcare firms. Even as the number of financial services firms doubled over
the past five years with a large influx into the BSIMM of newly-started initiatives, the financial services SSG
average age at assessment time remains 5.4 years, versus 3.1 years for insurance and 2.5 years for healthcare.
Time spent maturing their collective SSIs shows up clearly in the side-by-side comparison. Although the
insurance vertical includes some mature outliers, the data for these three regulated verticals show insurance
generally lags behind in software security. We see a starker contrast in healthcare, with virtually no outliers.
The overall maturity of the healthcare vertical remains low.

32 | Building Security in Maturity Model (BSIMM) Version 9

Compliance & Policy

Strategy & Metrics

Architecture Analysis

Standards & Requirements

Training

Security Features & Design

Attack Models

Configuration Mgmt. & Vulnerability Mgmt.

Code Review

Software Environment

Security Testing

Penetration Testing

Healthcare (19 of 120)Cloud (17 of 120)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CLOUD VS. HEALTHCARE SPIDER CHART

In the BSIMM population, we can find large gaps between the maturity of verticals. Consider the spider
diagram that directly compares the cloud and healthcare verticals. In this case, the delta between technology
firms that deliver cloud services and healthcare firms that are generally just getting started with software
security is rather obvious. Fortunately for verticals that find themselves behind this curve, verticals such
as cloud provide a good roadmap to faster maturity.

Building Security in Maturity Model (BSIMM) Version 9 | 33

Compliance & Policy

Strategy & Metrics

Architecture Analysis

Standards & Requirements

Training

Security Features & Design

Attack Models

Configuration Mgmt. & Vulnerability Mgmt.

Code Review

Software Environment

Security Testing

Penetration Testing

Earth (120)Retail (10 of 120)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RETAIL VS. EARTH SPIDER CHART

For the first time, the BSIMM presents data on the retail vertical. This group, with an average SSG age of 3.2
years and average SSG size of nearly eight full-time people, seems to track closely to the overall data pool.
The most obvious differences are in the Architecture Analysis, Software Environment, and Configuration
Management & Vulnerability Management practices, where retail participants are somewhat ahead of the
average for Earth.

In the tables on the following pages, you can see the BSIMM scorecards for the seven verticals compared side
by side. In the Activity columns, we have highlighted in yellow the most common activity in each practice as
observed in the entire BSIMM data pool (120 firms).

34 | Building Security in Maturity Model (BSIMM) Version 9

VERTICAL COMPARISON SCORECARD

GOVERNANCE

Activity
Financial

(of 50)
ISV

(of 42)
Tech

(of 22)
Healthcare

(of 19)
IoT

(of 16)
Insurance

(of 10)
Cloud
(of 17)

Retail
(of 10)

[SM1.1] 36 25 12 10 9 5 11 5

[SM1.2] 25 28 17 8 13 4 12 5

[SM1.3] 30 26 14 8 10 5 12 3

[SM1.4] 47 34 18 13 11 9 13 10

[SM2.1] 24 19 9 4 6 4 10 5

[SM2.2] 25 12 8 4 5 3 7 3

[SM2.3] 16 17 11 8 8 5 5 5

[SM2.6] 23 9 6 4 4 2 6 3

[SM3.1] 7 6 3 2 2 1 4 0

[SM3.2] 1 5 3 1 2 1 3 1

[SM3.3] 12 4 2 2 2 1 2 0

[CP1.1] 37 24 13 16 12 6 11 6

[CP1.2] 45 29 18 19 14 8 16 10

[CP1.3] 37 18 7 10 5 5 10 5

[CP2.1] 18 13 6 8 6 2 9 3

[CP2.2] 22 9 7 7 4 2 5 1

[CP2.3] 19 14 10 6 6 3 7 4

[CP2.4] 21 14 7 7 5 3 8 2

[CP2.5] 18 19 9 11 8 3 10 2

[CP3.1] 15 7 1 2 1 2 4 0

[CP3.2] 6 3 2 2 1 2 4 0

[CP3.3] 3 1 1 0 0 0 1 0

[T1.1] 36 31 15 10 12 6 15 8

[T1.5] 16 14 7 3 5 3 8 3

[T1.6] 10 14 8 3 7 0 6 2

[T1.7] 26 15 8 5 6 6 8 5

[T2.5] 8 8 4 2 3 2 3 3

[T2.6] 15 5 3 2 3 2 5 2

[T3.1] 0 3 2 0 1 0 3 0

[T3.2] 4 3 3 2 3 2 3 1

[T3.3] 1 5 3 1 1 1 2 0

[T3.4] 5 3 1 2 1 1 3 0

[T3.5] 1 2 0 0 0 0 2 2

[T3.6] 0 2 2 0 2 0 2 0

Building Security in Maturity Model (BSIMM) Version 9 | 35

INTELLIGENCE

Activity
Financial

(of 50)
ISV

(of 42)
Tech

(of 22)
Healthcare

(of 19)
IoT (of 16)

Insurance
(of 10)

Cloud
(of 17)

Retail
(of 10)

[AM1.2] 41 20 11 10 11 6 12 6

[AM1.3] 18 11 7 6 6 3 3 4

[AM1.5] 26 16 11 8 8 4 7 4

[AM2.1] 2 4 3 2 2 1 2 1

[AM2.2] 2 5 5 0 3 0 4 0

[AM2.5] 6 5 6 2 3 1 2 1

[AM2.6] 4 5 3 3 3 1 5 0

[AM2.7] 2 6 6 1 4 0 4 0

[AM3.1] 1 2 2 0 1 0 1 1

[AM3.2] 0 1 2 0 1 0 0 0

[SFD1.1] 42 32 16 14 12 9 16 8

[SFD1.2] 29 28 17 12 13 6 12 6

[SFD2.1] 14 16 8 4 6 2 8 2

[SFD2.2] 18 18 10 6 8 4 8 4

[SFD3.1] 6 2 1 0 1 0 2 1

[SFD3.2] 4 4 0 1 0 2 5 1

[SFD3.3] 0 0 1 1 1 0 0 1

[SR1.1] 41 23 12 11 10 5 12 5

[SR1.2] 36 27 13 14 10 5 14 6

[SR1.3] 40 24 15 9 10 7 9 8

[SR2.2] 23 11 6 4 3 4 6 4

[SR2.3] 13 6 4 4 3 2 5 3

[SR2.4] 15 19 10 6 8 3 10 1

[SR2.5] 14 9 6 6 5 3 4 2

[SR3.1] 7 8 6 1 4 2 5 1

[SR3.2] 3 4 4 2 3 3 2 0

[SR3.3] 4 3 4 2 4 2 1 0

36 | Building Security in Maturity Model (BSIMM) Version 9

SSDL TOUCHPOINTS

Activity
Financial

(of 50)
ISV

(of 42)
Tech

(of 22)
Healthcare

(of 19)
IoT

(of 16)
Insurance

(of 10)
Cloud
(of 17)

Retail
(of 10)

[AA1.1] 43 36 19 15 14 7 15 10

[AA1.2] 10 15 11 3 8 2 6 2

[AA1.3] 6 13 10 4 7 2 6 1

[AA1.4] 34 11 8 10 7 5 5 6

[AA2.1] 4 8 6 2 3 2 1 0

[AA2.2] 4 5 6 2 5 1 1 1

[AA3.1] 2 1 2 0 1 1 1 0

[AA3.2] 0 1 1 0 1 0 1 1

[AA3.3] 1 1 2 0 1 0 1 0

[CR1.2] 34 29 16 12 9 7 12 6

[CR1.4] 35 27 14 9 11 5 13 7

[CR1.5] 16 20 11 2 6 3 7 2

[CR1.6] 21 18 7 4 6 2 9 3

[CR2.5] 15 11 4 3 4 2 6 4

[CR2.6] 15 3 3 0 2 1 2 1

[CR2.7] 13 8 2 2 1 3 4 1

[CR3.2] 1 0 0 2 0 2 0 1

[CR3.3] 0 0 1 0 1 0 0 0

[CR3.4] 4 0 0 0 0 0 0 0

[CR3.5] 2 0 1 0 1 0 0 0

[ST1.1] 44 34 21 12 14 10 12 9

[ST1.3] 41 34 20 9 13 7 11 7

[ST2.1] 11 15 10 4 8 4 3 3

[ST2.4] 7 4 5 1 2 1 0 1

[ST2.5] 4 5 6 1 4 0 4 1

[ST2.6] 0 11 11 1 8 0 3 0

[ST3.3] 1 3 1 0 1 0 2 0

[ST3.4] 0 1 3 1 3 0 0 0

[ST3.5] 1 2 1 0 1 0 1 0

Building Security in Maturity Model (BSIMM) Version 9 | 37

BSIMM as a Longitudinal Study
Forty-two of the 120 firms in BSIMM9 have been measured at least twice. On average, the time between their
first and second measurements was 27.1 months. Although individual activities among the 12 practices come
and go (as shown in the longitudinal scorecard on the next page), in general, remeasurement over time shows
a clear trend of increased maturity among the 42 firms remeasured thus far. The raw score went up in 34 of
the 42 firms, and remained the same in three firms. Across all 42 firms, the observation count increased by an
average of 10.3 (39.8%). SSIs mature over time.

DEPLOYMENT

Activity
Financial

(of 50)
ISV

(of 42)
Tech

(of 22)
Healthcare

(of 19)
IoT

(of 16)
Insurance

(of 10)
Cloud
(of 17)

Retail
(of 10)

[PT1.1] 45 36 18 16 13 10 14 10

[PT1.2] 43 34 13 8 10 6 15 7

[PT1.3] 31 25 13 12 9 6 9 8

[PT2.2] 7 10 8 3 5 2 4 2

[PT2.3] 13 9 2 1 1 1 3 2

[PT3.1] 1 5 7 2 4 1 2 1

[PT3.2] 4 2 2 0 1 0 1 0

[SE1.1] 30 13 4 13 5 5 11 7

[SE1.2] 47 35 17 17 13 9 16 9

[SE2.2] 14 19 15 2 11 2 7 2

[SE2.4] 8 17 16 1 11 1 5 1

[SE3.2] 5 8 8 2 6 2 2 3

[SE3.3] 0 3 2 0 2 0 1 0

[SE3.4] 3 7 2 0 1 0 4 3

[SE3.5] 0 0 0 0 0 0 0 0

[SE3.6] 0 0 0 0 0 0 0 0

[SE3.7] 0 0 0 0 0 0 0 0

[CMVM1.1] 44 38 19 13 15 6 16 8

[CMVM1.2] 42 38 19 16 15 7 15 9

[CMVM2.1] 40 31 13 11 10 5 13 7

[CMVM2.2] 37 33 18 11 14 5 15 10

[CMVM2.3] 28 22 9 9 8 5 9 2

[CMVM3.1] 0 3 3 0 3 0 2 0

[CMVM3.2] 1 2 4 2 3 1 2 0

[CMVM3.3] 5 1 3 2 1 1 0 2

[CMVM3.4] 4 6 2 1 1 2 6 2

38 | Building Security in Maturity Model (BSIMM) Version 9

There are two ways of thinking about the change represented by the longitudinal scorecard (showing 42
BSIMM9 firms moving from their first to second assessment). We see the biggest changes in the following
activities: [SM1.1 Publish process (roles, responsibilities, plan), evolve as necessary], with 18 new observations;
[PT1.2 Feed results to the defect management and mitigation system], with 16 new observations; [T1.7 Deliver
on-demand individual training] and [CMVM2.3 Develop an operations inventory of applications], each with 15 new

LONGITUDINAL SCORECARD

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

Activity
BSIMM
Round 1
(of 42)

BSIMM
Round 2
(of 42)

Activity
BSIMM
Round 1
(of 42)

BSIMM
Round 2
(of 42)

Activity
BSIMM
Round 1
(of 42)

BSIMM
Round 2
(of 42)

Activity
BSIMM
Round 1
(of 42)

BSIMM
Round 2
(of 42)

[SM1.1] 17 34 [AM1.2] 28 35 [AA1.1] 36 40 [PT1.1] 37 40

[SM1.2] 20 27 [AM1.3] 11 18 [AA1.2] 13 16 [PT1.2] 21 36

[SM1.3] 20 26 [AM1.5] 18 24 [AA1.3] 10 15 [PT1.3] 21 27

[SM1.4] 34 39 [AM2.1] 4 6 [AA1.4] 24 28 [PT2.2] 9 7

[SM2.1] 15 25 [AM2.2] 4 4 [AA2.1] 4 8 [PT2.3] 15 13

[SM2.2] 12 18 [AM2.5] 6 8 [AA2.2] 2 3 [PT3.1] 4 2

[SM2.3] 15 21 [AM2.6] 7 4 [AA3.1] 5 4 [PT3.2] 1 2

[SM2.6] 18 22 [AM2.7] 4 6 [AA3.2] 0 1

[SM3.1] 7 12 [AM3.1] 0 1 [AA3.3] 7 4

[SM3.2] 1 2 [AM3.2] 0 1

[SM3.3] 10 12

[CP1.1] 27 31 [SFD1.1] 33 37 [CR1.2] 23 31 [SE1.1] 18 22

[CP1.2] 35 38 [SFD1.2] 28 32 [CR1.4] 25 35 [SE1.2] 36 38

[CP1.3] 22 33 [SFD2.1] 10 17 [CR1.5] 13 18 [SE2.2] 14 15

[CP2.1] 15 19 [SFD2.2] 11 21 [CR1.6] 15 26 [SE2.4] 7 12

[CP2.2] 15 16 [SFD3.1] 2 7 [CR2.5] 9 17 [SE3.2] 1 4

[CP2.3] 15 17 [SFD3.2] 6 10 [CR2.6] 4 13 [SE3.3] 7 2

[CP2.4] 13 21 [SFD3.3] 3 2 [CR2.7] 10 13 [SE3.4] 0 2

[CP2.5] 20 25 [CR3.2] 2 3 [SE3.5] 0 0

[CP3.1] 8 14 [CR3.3] 1 3 [SE3.6] 0 0

[CP3.2] 9 10 [CR3.4] 0 0 [SE3.7] 0 0

[CP3.3] 1 3 [CR3.5] 4 3

[T1.1] 27 36 [SR1.1] 28 34 [ST1.1] 30 35 [CMVM1.1] 34 38

[T1.5] 7 18 [SR1.2] 25 34 [ST1.3] 31 34 [CMVM1.2] 39 38

[T1.6] 8 8 [SR1.3] 25 34 [ST2.1] 15 16 [CMVM2.1] 36 38

[T1.7] 14 26 [SR2.2] 13 22 [ST2.4] 3 7 [CMVM2.2] 27 35

[T2.5] 5 11 [SR2.3] 0 15 [ST2.5] 2 5 [CMVM2.3] 17 28

[T2.6] 7 8 [SR2.4] 10 17 [ST2.6] 5 4 [CMVM3.1] 2 0

[T3.1] 1 4 [SR2.5] 9 17 [ST3.3] 1 1 [CMVM3.2] 1 3

[T3.2] 1 5 [SR3.1] 5 7 [ST3.4] 0 0 [CMVM3.3] 2 1

[T3.3] 0 2 [SR3.2] 6 8 [ST3.5] 3 3 [CMVM3.4] 0 5

[T3.4] 1 7 [SR3.3] 13 10

[T3.5] 1 6

[T3.6] 3 4

Building Security in Maturity Model (BSIMM) Version 9 | 39

observations; [SM2.1 Publish data about software security internally], with 14 new observations; and [T1.5 Deliver
role-specific advanced curriculum (tools, technology stacks, and bug parade)], [SM1.2 Create evangelism role and
perform internal marketing], [SFD2.2 Create SSG capability to solve difficult design problems], and [SR1.2 Create a
security portal], each with 13 new observations. The change cannot always be seen directly on this scorecard.
For example, [CP2.3 Implement and track controls for compliance] was a new activity for nine firms, but the
scorecard clearly shows that the total observations increased by only two. What happened? Simply put, there
was churn. Although the activity was newly observed in nine firms, it was no longer observed in seven firms or
went away due to data aging out, giving a total change of two (as shown in the scorecard).

In a different example, the activity [T1.6 Create and use material specific to company history] was both newly
observed in four firms and no longer observed in four firms. Therefore, the total observation count remains
unchanged on the scorecard. The same type of zero-sum churn also occurred in [AM2.2 Create technology-
specific attack patterns].

Compliance & Policy

Strategy & Metrics

Architecture Analysis

Standards & Requirements

Training

Security Features & Design

Attack Models

Configuration Mgmt. & Vulnerability Mgmt.

Code Review

Software Environment

Security Testing

Penetration Testing

R2 Earth (42)R1 Earth (42)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ROUND 1 EARTH VS. ROUND 2 EARTH

40 | Building Security in Maturity Model (BSIMM) Version 9

Compliance & Policy

Strategy & Metrics

Architecture Analysis

Standards & Requirements

Training

Security Features & Design

Attack Models

Configuration Mgmt. & Vulnerability Mgmt.

Code Review

Software Environment

Security Testing

Penetration Testing

R3 Earth (20)R1 Earth (20)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ROUND 1 EARTH VS. ROUND 3 EARTH

Firms tend to mature between measurements, as seen in the two spider charts on pages 36 and 37. Forty-two
firms have been measured twice, and 20 firms have been measured three times.

Emerging Trends in the BSIMM Data
As the BSIMM community grew, we added a greater number of firms with newer software security initiatives,
and we began to track new verticals that have less software security experience. Thus, we expected to see a
direct impact on the data. Specifically, adding firms with less experience decreased average overall maturity
to 33.1 in BSIMM8, from 33.9 in BSIMM7 and 36.7 in BSIMM6, even as remeasurements have shown that
individual firm maturity increases over time.

For BSIMM9, however, the average score increased to 34.0. One reason for this change—a potential reversal
of the decline in overall maturity—appears to be the mix of firms embarking on their first BSIMM assessment.
The average SSG age for new firms entering BSIMM6 was 2.9 years; it was 3.37 years for BSIMM7 and 2.83
years for BSIMM8, but increased to 4.57 years for BSIMM9. Another reason appears to be an increase in firms
continuing to use BSIMM assessments to guide their initiatives. BSIMM7 included 11 firms that received their
second or higher assessment. That figure increased to 12 firms for BSIMM8 and 16 firms for BSIMM9.

We also see this potential reversal in mature verticals such as financial services where average overall maturity
decreased to 35.6 in BSIMM8 from 36.2 in BSIMM7 and 38.3 in BSIMM6. For BSIMM9, the average financial
services score increased to 36.8. Note that five of the 11 firms dropped from BSIMM9 due to data age were

Building Security in Maturity Model (BSIMM) Version 9 | 41

in the financial services group. A similar effect was evident in personnel where, with the exception of some
outliers, we observed an overall decrease in SSG size on first measurement, but the number increased from
6.1 for BSIMM7 and 8.8 for BSIMM8 to 11.6 for BSIMM9. Note that a large number of firms with no satellite
continue to exist in the community, which causes the median satellite size to be zero (66 of 120 firms had no
satellite at the time of their current assessment, and two-thirds of the firms added for BSIMM9 had no satellite
at assessment time). Previous BSIMM reports indicated that the existence of a satellite is directly related to
maturity, thus the fact that fewer firms had a satellite accounted for the number of immature firms in the
BSIMM8 population. For the 54 BSIMM9 firms with a satellite at assessment time, the average size was 116.5.

For BSIMM8, we zoomed in on two particular activities as part of our analysis. Observations of [AA3.3 Make
the SSG available as an AA resource or mentor] dropped to 2% in the BSIMM8 community, from 5% in BSIMM7,
17% in BSIMM6, and 30% in BSIMM-V. However, observations rose to 3% for BSIMM9. Observations of [SR3.3
Use secure coding standards] dropped to 14% in BSIMM8, from 18% in BSIMM7, 29% in BSIMM6, and 40% in
BSIMM-V. In this case, the slide continued to 8% for BSIMM9. This kind of change can be seen in activities
spanning all 12 practices. Instead of focusing on a robust, multiactivity approach to a given practice, many
firms have a tendency to pick one figurehead activity on which to focus their next round of investment.

Firms in the BSIMM community for multiple years have, with one or two exceptions, always increased in
maturity over time. We expect the majority of newer firms entering the BSIMM population to do the same.

BSIMM Community
The 120 firms participating in the BSIMM make up the BSIMM community. A private online community
platform with nearly 600 members provides software security personnel a forum to discuss solutions with
others who face the same issues, refine strategy with someone who has already addressed an issue, seek
out mentors from those further along a career path, and band together to solve hard problems. Community
members also receive exclusive access to topical webinars and other curated content.

The BSIMM community also hosts annual private conferences where representatives from each firm gather
in an off-the-record forum to discuss software security initiatives. To date, 15 BSIMM community conferences
have been held, eight in the United States and seven in Europe. During the conferences, representatives from
BSIMM firms give the presentations.

The BSIMM website includes a credentialed BSIMM community section where information from conferences,
working groups, and mailing list-initiated studies are posted.

42 | Building Security in Maturity Model (BSIMM) Version 9

PART TWO
This part of the document provides detail behind the people and activities involved in a software security
initiative and measured by the BSIMM. We begin by describing the software security group (SSG) and other
key roles. We then provide descriptions for each of the 116 activities that comprise BSIMM9. Throughout, we
annotate our discussion with relevant observation data from the 120 participating firms.

Roles in a Software Security Initiative
Determining who is supposed to carry out the activities described in the BSIMM is an important part of
making any SSI work.

Executive Leadership
Of primary interest is identifying and empowering a senior executive to manage operations, garner resources,
and provide political cover for an SSI. Grassroots approaches to software security sparked and led solely
by developers and their direct managers have a poor track record in the real world. Likewise, initiatives
spearheaded by resources from an existing network security group often run into serious trouble when
it comes time to interface with development groups. By identifying a senior executive and putting him or
her in charge of software security directly, you address two management 101 concerns: accountability and
empowerment. You also create a place in the organization where software security can take root and
begin to thrive.

The individuals in charge of the SSIs we studied have a variety of titles. Examples include Chief Data & Security
Privacy Officer, CISO, CSO, Director Enterprise Security Architecture, Director Global Security & Compliance,
Director Product Security, Executive Director Product Operations, Head Application Security Architecture &
Engineering, Head Application Security Programs, Manager InfoSec Engineering, Manager Product Security,
Managing VP of Security Engineering, Threat & Vulnerability Management Lead, VP Application Security &
Technology Analysis, VP Cybersecurity, VP InfoSec, and Web Security Manager. We observed a fairly wide
spread in exactly where the SSG is situated in
the firms we studied. In particular, 63 of the 120
participating firms have SSGs that are run by a CISO
or report to a CISO as their nearest senior executive.
Thirteen of the firms report through a CTO as their
closest senior executive, while 10 report to a CIO,
seven to a CSO, four to a COO, two to a CRO, and one
to a CAO. Twenty of the SSGs report through some
type of technology or product organization.

Developer-led

grassroots approaches

to software security

have a poor

track record in

the real world.

Building Security in Maturity Model (BSIMM) Version 9 | 43

Software Security Group (SSG)
The second most important role in an SSI after the senior executive is the SSG itself. Every single one of the
120 initiatives we describe in BSIMM9 has an SSG. In fact, successfully carrying out BSIMM activities without
an SSG is very unlikely (and has never been observed in the field to date), so the creation of an SSG is a crucial
first step in working to adopt BSIMM activities. The best SSG members are software security people, but they
are often impossible to find. If you must create software security types from scratch, start with developers
and teach them about security. Starting with network security people and attempting to teach them about
software, compilers, SDLCs, bug tracking, and everything else in the software universe usually fails to produce
the desired results. Unfortunately, no amount of traditional security knowledge can overcome a lack of
experience building software.

SSGs come in a variety of shapes and sizes, but all good SSGs appear to include both people with deep coding
experience and people with architectural chops. As you will see below, software security can’t only be about
finding specific bugs, such as the OWASP Top Ten. Code review is an important best practice, and to perform
code review, you must actually understand code (not to mention the huge piles of security bugs). However, the
best code reviewers sometimes make poor software architects, and asking them to perform an architecture
risk analysis will only result in blank stares. Make sure that you cover architectural capabilities in your SSG
as well as you cover code. Finally, SSGs are often asked to mentor, train, and work directly with hundreds of
developers. Communication skills, teaching capability, and practical knowledge are must-haves for at least a
portion of the SSG staff. For more about this issue, see our Search Security article based on SSG structure data
gathered at the 2014 BSIMM Community Conference: How to Build a Team for Software Security Management.

Although no two of the 120 firms we examined had exactly the same SSG structure (suggesting that there is no
one set way to structure an SSG), we did observe some commonalities that are worth mentioning. At the highest
level of organization, SSGs come in five major flavors: 1) organized to provide software security services, 2)
organized around setting policy, 3) mirroring business unit organizations, 4) organized with a hybrid policy and
services approach, and 5) structured around managing a distributed network of others doing software security
work. Some SSGs are highly distributed across a firm and others are centralized. If we look across all of the SSGs
in our study, though, there are several common subgroups: people dedicated to policy, strategy, and metrics;
internal “services” groups that (often separately) cover tools, penetration testing, and middleware development
plus shepherding; incident response groups; groups responsible for training development and delivery;
externally-facing marketing and communications groups; and vendor control groups.

In the statistics reported above, we noted an average ratio of SSG to development of 1.33% across the entire
group of 120 organizations that we studied, meaning we found one SSG member for every 75 developers
when we averaged the ratios for each participating firm. The SSG with the largest ratio was 10%, and the
smallest was 0.01%. As a reminder, SSG size on average among the 120 firms was 13.3 people (smallest 1,
largest 160, median 5.5).

Satellite
In addition to the SSG, many SSIs have identified a number of individuals (often developers, testers, and
architects) who share a basic interest in software security but are not directly employed in the SSG. When
people like this carry out software security activities, we call this group a satellite.

44 | Building Security in Maturity Model (BSIMM) Version 9

Satellites are sometimes widely distributed, with one or two members in each product group, and sometimes
they are more focused, getting together regularly to compare notes, learn new technologies, and expand the
understanding of an organization’s software security. Identifying and fostering a strong satellite is important to
the success of many SSIs (but not all of them). Some BSIMM activities target the satellite explicitly.

Of particular interest, 27 of the 30 firms with the highest BSIMM scores have a satellite, with an average satellite
size of nearly 182 people. Outside the top 30, 27 of the remaining 90 firms have a satellite (30%). Of the 30 firms
with the lowest BSIMM scores, only three have a satellite, and the bottom 10 have no satellite at all.

Sixty-four percent of firms that have been assessed more than once have a satellite, while 65% of firms on
their first assessment do not. Firms that are new to software security take some time to identify and develop a
satellite. These data suggest that as an SSI matures, its activities become distributed and institutionalized into
the organizational structure. Among our population of 120 firms, initiatives tend to evolve from centralized and
specialized in the beginning to decentralized and distributed (with an SSG at the core orchestrating things).

Everybody Else
Our survey participants have engaged everyone involved in the
software development lifecycle (SDLC) as a means of addressing
software security.

• Builders, including developers, architects, and their
managers, must practice security engineering, ensuring that
the systems that they build are defensible and not riddled
with holes. The SSG will interact directly with builders
when they carry out the activities described in the BSIMM.
Generally speaking, as an organization matures, the SSG
attempts to empower builders so that they can carry out
most BSIMM activities themselves, with the SSG helping in special cases and providing oversight. We often
don’t explicitly point out whether a given activity is to be carried out by the SSG, developers, or testers.
Each organization should come up with an approach that makes sense and accounts for its own workload
and software lifecycle.

• Testers concerned with routine testing and verification should do what they can to keep an eye out for
security problems. Some BSIMM activities in the Security Testing practice can be carried out directly by QA.

• Operations people must continue to design, defend, and maintain reasonable environments. As you will
see in the Deployment domain of the software security framework (SSF), software security doesn’t end
when software is “shipped.” This includes cloud software and DevOps shops.

• Administrators must understand the distributed nature of modern systems and begin to practice the
principle of least privilege, especially when it comes to the applications they host or attach to as services in
the cloud.

• Executives and middle management, including line of business owners and product managers, must
understand how early investment in security design and security analysis affects the degree to which users
will trust their products. Business requirements should explicitly address security needs. Any sizeable
business today depends on software to work. Software security is a business necessity.

• Vendors, including those who supply COTS, custom software, and software-as-a-service, are increasingly
subjected to SLAs and reviews (such as vBSIMM) that help ensure products are the result of a secure SDLC.

Twenty-seven

of the 30 firms

with the highest

BSIMM scores

have a satellite.

https://www.synopsys.com/software-integrity/solutions/by-security-need/vendor-analysis.html

Building Security in Maturity Model (BSIMM) Version 9 | 45

BSIMM9 Activities
Take a look at the BSIMM skeleton in Part One if you need help understanding how the activities associated
with each of the 12 BSIMM practices are organized in this section. For each activity, we show the activity label,
followed by the number of firms in BSIMM9 performing that activity.

GOVERNANCE: Strategy & Metrics (SM)
The Strategy & Metrics practice encompasses planning, assigning roles and responsibilities,
identifying software security goals, determining budgets, and identifying metrics and gates.

SM LEVEL 1
[SM1.1: 71] Publish process (roles, responsibilities, plan), evolve as necessary.
The process for addressing software security is broadcast to all stakeholders so that everyone knows the
plan. Goals, roles, responsibilities, and activities are explicitly defined. Most organizations pick and choose
from a published methodology, such as the Microsoft SDL or the Synopsys Touchpoints, and then tailor the
methodology to their needs. An SSDL process must be adapted to the specifics of the development process
it governs (e.g., waterfall, agile, CI/CD, DevOps, etc.) because it will evolve with both the organization and the
security landscape. A process must be published to count. In many cases, the methodology is controlled by the
SSG and published only internally. The SSDL does not need to be publicly promoted outside of the firm to have
the desired impact.

[SM1.2: 66] Create evangelism role and perform internal marketing.
In order to build support for software security throughout the organization, someone in the SSG must play an
evangelism role. This internal marketing function helps keep executives and all other stakeholders current on
the magnitude of the software security problem and the elements of its solution. An agile coach familiar with
security, for example, could help teams adopt better software security practices as they transform to an agile
methodology. Evangelists typically give talks for internal groups including executives, extend invitations to
outside speakers, author white papers for internal consumption, or create a collection of papers, books, and
other resources on an internal website and promote its use. A canonical example of such an evangelist was
Michael Howard’s role at Microsoft just after the Gates memo.

[SM1.3: 67] Educate executives.
Executives are periodically shown the consequences of inadequate software security and the negative
business impact that poor security can have. They’re also shown what other organizations are doing to attain
software security, including dealing with the risks of adopting “flavor of the day” engineering methodologies
with no oversight. By understanding both the problem and its proper resolution, executives can support the
SSI as a risk management necessity. In its most dangerous form, such education arrives courtesy of malicious
hackers or public data exposure incidents. Preferably, the SSG will demonstrate a worst-case scenario in a
controlled environment with the permission of all involved (e.g., actually showing working exploits and their
business impact). In some cases, presentation to the Board can help garner resources for an ongoing SSI.
Bringing in an outside guru is often helpful when seeking to bolster executive attention. Tying education to
specific development areas, such as mobile or cloud services, or particular methodologies, such as CI/CD
and DevOps, can help convince leadership to accept SSG recommendations where they might otherwise be
ignored in favor of faster release dates or other priorities.

46 | Building Security in Maturity Model (BSIMM) Version 9

[SM1.4: 101] Identify gate locations, gather necessary artifacts.
The software security process includes release gates/checkpoints/milestones at one or more points in an
SDLC or, more likely, multiple SDLCs. The first two steps toward establishing security-specific release gates
are to identify gate locations that are compatible with existing development practices and to begin gathering
the input necessary for making a go/no-go decision. Importantly, the gates are not enforced at this stage. For
example, the SSG can collect security testing results for each project prior to release but stop short of passing
judgment on what constitutes sufficient testing or acceptable test results. Shorter release cycles, as are seen
in organizations practicing CI/CD, often require creative approaches to collecting the right evidence and rely
heavily on lightweight, super-fast automation. The idea of identifying gates first and enforcing them later on is
extremely helpful in moving development toward software security without major pain. Socialize the gates and
then turn them on once most projects already know how to succeed. This gradual approach serves to motivate
good behavior without requiring it.

SM LEVEL 2
[SM2.1: 47] Publish data about software security internally.
The SSG publishes data internally about the state of software security within the organization to facilitate
improvement. This information might come in the form of a dashboard with metrics for executives and
software development management. Sometimes, these published data are not shared with everyone in the
firm but with the relevant executives only. In such cases, publishing the information to executives who then
drive change in the organization is necessary. In other cases, open book management and data published to all
stakeholders helps everyone know what’s going on, with the philosophy that sunlight is the best disinfectant.
If the organization’s culture promotes internal competition between groups, this information adds a security
dimension to the game. The time compression associated with CI/CD calls for measurements that can be taken
quickly and accurately, focusing less on historical trends (e.g., bugs per release) and more on speed (e.g.,
time to fix).

[SM2.2: 42] Enforce gates with measurements and track exceptions.
SDLC security gates are enforced for every software
project: to pass a gate, a project must either meet
an established measure or obtain a waiver. Even
recalcitrant project teams must now play along. The
SSG tracks exceptions. A gate could require a project
to undergo code review and remediate any critical
findings before release. In some cases, gates are directly
associated with controls required by regulations,
contractual agreements, and other business obligations,
and exceptions are tracked as required by statutory or
regulatory drivers. In other cases, gate measures yield
key performance indicators that are used to govern the
process. A revolving door or a rubber stamp exception
process does not count. If some projects are automatically passed, that defeats the purpose of enforcing
gates. Even seemingly innocuous development projects, such as a new mobile client for an existing back-end
or an application ported to a cloud environment from an internal data center, must successfully pass the
prescribed security gates in order to progress. Similarly, APIs, frameworks, libraries, COTS, microservices,
container configurations, and so on are all software that must traverse the security gates.

A revolving door

or a rubber stamp

exception process

does not count.

Building Security in Maturity Model (BSIMM) Version 9 | 47

[SM2.3: 44] Create or grow a satellite.
A satellite begins as a collection of people scattered
across the organization who show an above-average
level of security interest or skill. Identifying this group is
a step toward creating a social network that speeds the
adoption of security into software development. One
way to begin is to track the people who stand out during
introductory training courses (see [T3.6 Identify satellite
through training]). Another way is to ask for volunteers. In
a more top-down approach, initial satellite membership
is assigned to ensure complete coverage of all development/product groups. Ongoing membership should be
based on actual performance. A strong satellite is a good sign of a mature SSI. In new or fast-moving technology
areas such as mobile development, or in development paradigms such as DevOps, satellite members can help
combine software security skills with domain knowledge that might be underrepresented in the SSG. Agile
coaches make particularly useful satellite members.

[SM2.6: 39] Require security sign-off.
The organization has an initiative-wide process for accepting security risk and documenting accountability.
A risk acceptor signs off on the state of all software prior to release. For example, the sign-off policy might
require the head of the business unit to sign off on critical vulnerabilities that have not been mitigated or
SSDL steps that have been skipped. The policy must apply to outsourced projects, such as a boutique mobile
application, and to projects that will be deployed in external environments, such as the cloud. Informal or
uninformed risk acceptance alone does not count as security sign-off because the act of accepting risk is more
effective when it is formalized (e.g., with a signature, form submission, or something similar) and captured
for future reference. Similarly, simply stating that certain projects never need a sign-off does not achieve the
desired results.

SM LEVEL 3
[SM3.1: 15] Use an internal tracking application with portfolio view.
The SSG uses a centralized tracking application to chart the progress of every piece of software in its purview,
regardless of development methodology. The application records the security activities scheduled, in progress,
and completed, incorporating results from activities such as architecture analysis, code review, and security
testing even when they happen in a tight loop. The SSG uses the tracking application to generate portfolio
reports for many of the metrics it uses. A combined inventory and risk posture view is fundamental. In many
cases, these data are published at least among executives. Depending on the culture, this can cause interesting
effects via internal competition. As an initiative matures and activities become more distributed, the SSG uses
the centralized reporting system to keep track of all the moving parts.

[SM3.2: 7] Run an external marketing program.
The SSG helps the firm market the SSI outside to build external support. Software security grows beyond
being a risk reduction exercise and instead becomes a competitive advantage or market differentiator. The
SSG might write papers or books about its SSDL or have a public blog. It might also participate in external
conferences or trade shows. In some cases, a complete SSDL methodology can be published and promoted
externally. Mobile and cloud security projects can make great software security case studies. Sharing details
externally and inviting critique can bring new perspectives into the firm.

The key is to tie

technical results to

business objectives.

48 | Building Security in Maturity Model (BSIMM) Version 9

[SM3.3: 18] Identify metrics and use them to drive budgets.
The SSG and its management choose the
metrics that define and measure SSI progress.
These metrics will drive the initiative’s budget
and resource allocations, so simple counts and
statistics won’t suffice. Metrics also allow the SSG
to explain its goals and progress in quantitative
terms. One such metric could be security defect
density, a reduction in which could be used to
show a decreasing cost of remediation over time.
Recall that, in agile methodologies, metrics are
best collected early and often in a lightweight
manner. The key here is to tie technical results to
business objectives in a clear and obvious fashion
in order to justify funding. Because the concept
of security is already tenuous to many business
people, making an explicit tie-in can be helpful.

GOVERNANCE: Compliance & Policy (CP)
The Compliance & Policy practice is focused on identifying controls for compliance regimens such
as PCI DSS and HIPAA, developing contractual controls such as service-level agreements (SLAs) to
help control COTS software risk, setting organizational software security policy, and auditing against
that policy.

CP LEVEL 1
[CP1.1: 79] Unify regulatory pressures.
If the business or its customers are subject to regulatory or compliance drivers such as GDPR, FFIEC, GLBA,
OCC, PCI DSS, SOX, HIPAA, or others, the SSG acts as a focal point for understanding the constraints such
drivers impose on software. In some cases, the SSG creates a unified approach that removes redundancy
and conflicts from overlapping compliance requirements. A formal approach will map applicable portions
of regulations to control statements explaining how the organization complies. As an alternative, existing
business processes run by legal or other risk and compliance groups outside the SSG could also serve as the
regulatory focal point. A single set of software security guidance ensures that compliance work is completed
as efficiently as possible. Some firms move on to guide exposure by becoming directly involved in standards
groups exploring new technologies in order to influence the regulatory environment.

[CP1.2: 101] Identify PII obligations.
The way software handles personally identifiable information (PII) could be explicitly regulated, but even if it
isn’t, privacy is a hot topic. The SSG plays a key role in identifying and describing PII obligations stemming from
regulation and customer expectations. It uses this information to promote best practices related to privacy.
For example, if the organization processes credit card transactions, the SSG will identify the constraints that
the PCI DSS places on the handling of cardholder data and then inform all stakeholders. Note that outsourcing
to hosted environments (e.g., the cloud) does not relax PII obligations. Also note that firms creating software
products that process PII (but that don’t necessarily handle PII directly) can get credit by providing privacy

Software security should

grow beyond a risk

reduction exercise to

become a competitive

advantage.

Building Security in Maturity Model (BSIMM) Version 9 | 49

controls and guidance for their customers. The proliferation of Internet of Things (IoT) and mobile devices
adds yet another dimension to PII protection.

[CP1.3: 66] Create policy.
The SSG guides the rest of the organization by creating or contributing to software security policy that satisfies
internal, regulatory, and customer-driven security requirements. The policy includes a unified approach for
satisfying the (potentially lengthy) list of security drivers at the governance level. As a result, project teams
can avoid keeping up with the details involved in complying with all applicable regulations or other mandates.
Likewise, project teams don’t need to relearn customer security requirements on their own. The SSG policy
documents are sometimes focused around major compliance topics such as the handling of PII or the use
of cryptography. In some cases, policy documents relate directly to the SSDL and its use in the firm. Because
they’re new, codifying decisions about IoT, cloud, and mobile architectures can add some much needed pizzazz
to the policy discussion. Similarly, it may be necessary to explain what can and can’t be automated into CI/

CD and continuous deployment pipelines. Architecture
standards and coding guidelines are not examples of
software security policy. On the other hand, policy that
prescribes and mandates the use of coding guidelines
and architecture standards for certain categories of
applications does count. Policy is what is permitted and
denied at the initiative level. If it’s not mandatory,
it’s not policy.

CP LEVEL 2
[CP2.1: 39] Identify PII data inventory.
The organization identifies the kinds of PII processed or stored by each of its systems and their data
repositories, including mobile and cloud environments. A PII inventory can be approached in two ways: starting
with each individual application by noting its PII use or starting with particular types of PII and the applications
that touch them. In either case, an inventory of data repositories is required. Note that when applications are
distributed across multiple deployment environments, PII inventory control can get tricky. Do not ignore it.
Likewise, do not ignore the constantly evolving definitions of PII. When combined with the organization’s PII
obligations, this inventory guides privacy planning. For example, the SSG can now create a list of databases
that would require customer notification if breached or referenced in crisis simulations (see [CMVM3.3 Simulate
software crises]).

[CP2.2: 38] Require security sign-off for compliance-related risk.
The organization has a formal compliance risk acceptance and accountability process that addresses all
software development projects, regardless of development methodology. The SSG might act as an advisor
when the risk acceptor signs off on the state of the software prior to release. For example, the sign-off policy
might require the head of the business unit to sign off on compliance issues that have not been mitigated or
SSDL steps related to compliance that have been skipped. Sign-off should be explicit and captured for future
reference. Any exceptions should be tracked, even under the fastest of agile methodologies. An application
without security defects might still be noncompliant.

[CP2.3: 43] Implement and track controls for compliance.
The organization can demonstrate compliance with applicable regulations because its SSDL is aligned with the
control statements developed by the SSG (see [CP1.1 Unify regulatory pressures]). The SSG tracks the controls,
shepherds problem areas, and makes sure auditors and regulators are satisfied. If the organization’s SDLC

If it’s not mandatory,

it’s not policy.

50 | Building Security in Maturity Model (BSIMM) Version 9

is predictable and reliable, the SSG might be able to largely sit back and keep score. If the SDLC is uneven,
less reliable, or trying to go faster than its supporting infrastructure can handle (looking at you, CI/CD), the
SSG could be forced to take a more active role as referee. A firm doing this properly can explicitly associate
satisfying its compliance concerns with following its SSDL.

[CP2.4: 42] Include software security SLAs in all vendor contracts.
Vendor contracts include an SLA ensuring that the vendor will not jeopardize the organization’s compliance
story and SSI. This is particularly important when selecting cloud computing providers. Each new or renewed
contract contains a set of provisions requiring the vendor to address software security and deliver a product
or service compatible with the organization’s security policy (see [SR2.5 Create SLA boilerplate]). In some cases,
open source licensing concerns initiate the vendor management process, which can open the door for further
software security language in the SLA. Traditional IT security requirements and a simple agreement to allow
penetration testing are not sufficient.

[CP2.5: 47] Ensure executive awareness of compliance and privacy obligations.
The SSG gains executive buy-in around compliance and privacy activities. Executives are provided plain-language
explanations of the organization’s compliance and privacy obligations, plus the potential consequences for failing
to meet those obligations. For some organizations, explaining the direct cost and likely fallout from a compliance
failure or data breach could be an effective way to broach the subject. For other organizations, having an
outside expert address the Board works because some executives value outside perspective more than internal
perspective. One sure sign of proper executive buy-in is adequate allocation of resources to get the job done. Be
aware that the light and heat typically following a breach will not last.

CP LEVEL 3
[CP3.1: 21] Create a regulator compliance story.
The SSG has the information regulators want. A combination of written policy, controls documentation, and
artifacts gathered through the SSDL gives the SSG the ability to demonstrate the organization’s compliance story
without a fire drill for every audit or piece of paper for every sprint. In some cases, regulators, auditors, and
senior management are satisfied with the same
kinds of reports, which might be generated
directly from various tools. Governments are
not the only regulators of behavior.

[CP3.2: 12] Impose policy on vendors.
Vendors are required to adhere to the
same policies used internally and must
submit evidence that their software security
practices pass muster. This goes for cloud and
mobile platform providers as well. Evidence
could include results from code reviews or
penetration tests. Vendors may also attest to
the fact that they are carrying out certain SSDL
processes. In some cases, a BSIMM score or a
vBSIMM score is used to help ensure that vendors are complying with the firm’s policies.

[CP3.3: 5] Drive feedback from SSDL data back to policy.
Information from the SSDL is routinely fed back into the policy creation process to help find defects earlier or to

The SSG can demonstrate

the organization’s

compliance story without

a fire drill.

Building Security in Maturity Model (BSIMM) Version 9 | 51

prevent them from occurring in the first place. Blind spots are eliminated based on trends in SSDL failures.
For example, inadequate architecture analysis, recurring vulnerabilities, ignored security gates, or choosing the
wrong firm to carry out a penetration test can expose policy weakness. Likewise, policies that impose too much
bureaucracy might need to be adjusted to fit agile methodologies. Over time, policies should become more
practical and easier to carry out (see [SM1.1 Publish process (roles, responsibilities, plan), evolve as necessary]).
Ultimately, policies align themselves with the SSDL data to enhance and improve a firm’s effectiveness.

GOVERNANCE: Training (T)
Training has always played a critical role in software security because software developers and
architects often start with little security knowledge.

T LEVEL 1
[T1.1: 80] Provide awareness training.
The SSG provides awareness training in order to promote a culture of software security throughout the
organization. Training might be delivered via SSG members, an outside firm, the internal training organization,
or e-learning. Course content isn’t necessarily tailored for a specific audience. For example, all programmers, QA
engineers, and project managers could attend the same “Introduction to Software Security” course, but this activity
should be enhanced with a tailored approach that addresses a firm’s culture explicitly. Generic introductory courses
that cover basic IT or high-level software security concepts do not generate satisfactory results. Likewise, awareness
training aimed only at developers and not at other roles in the organization is insufficient.

[T1.5: 34] Deliver role-specific advanced curriculum (tools, technology stacks, and bug parade).
Software security training goes beyond building awareness by enabling trainees to incorporate security
practices into their work. The training is tailored to cover the tools, technology stacks, development
methodologies, and bugs that are most relevant to the trainee. An organization might offer four tracks for
its engineers: one for architects, one for Java developers, one for mobile developers, and a fourth for testers.
Tool-specific training is also commonly observed in a curriculum. Don’t forget that training will be useful for
many different roles in an organization, including QA, product management, executives, and others.

[T1.6: 26] Create and use material specific to company history.
To make a strong and lasting change in behavior, training includes material specific to the company’s history.
When participants can see themselves in the problem, they are more likely to understand how the material is
relevant to their work and to know when and how to apply what they have learned. One way to do this is to
use noteworthy attacks on the company as examples in the training curriculum. Be wary of training that covers
platforms not used by developers (Windows developers don’t care about old Unix problems) or examples of
problems only relevant to languages no longer in common use (Java developers don’t need to understand
buffer overflows in C). Stories from company history can help steer training in the right direction, but only if
the stories are still relevant and not overly censored.

[T1.7: 47] Deliver on-demand individual training.
The organization lowers the burden on trainees and reduces the cost of delivering training by offering on-
demand training for individuals across roles. The most obvious choice, e-learning, can be kept up to date
through a subscription model, but online courses must be engaging and relevant to achieve their intended
purpose. Of course, training that sits around on the shelf does nobody any good, and hot topics like mobile
and cloud will attract more interest than wonky policy discussions. For developers, it is possible to provide

52 | Building Security in Maturity Model (BSIMM) Version 9

training directly through the IDE right at the time that it’s needed, but in some cases, building a new skill
(such as code review) could be better suited for instructor-led training.

T LEVEL 2

[T2.5: 21] Enhance satellite through training and events.
The SSG strengthens the satellite network by inviting guest speakers or holding special events about advanced
topics (e.g., the latest software security techniques for AWS cloud development). Offering pizza and beer
doesn’t hurt. A standing conference call with voluntary attendance does not get the desired results, which
are as much about building camaraderie as it is about
sharing knowledge and organizational efficiency.
There’s no substitute for face-to-face meetings, even if
they happen only once or twice a year.

[T2.6: 23] Include security resources in
onboarding.
The process for bringing new hires into the engineering
organization requires that they complete a training
module about software security. The generic new
hire process usually covers things like picking a good
password and making sure that people don’t tail you
into the building, but this orientation period can be
enhanced to cover topics such as secure coding, the
SSDL, and internal security resources. The objective is
to ensure that new hires contribute to the security culture. Turnover in engineering organizations is generally
high, and although a generic onboarding module is useful, it does not take the place of a timely and more
complete introductory software security course.

T LEVEL 3

[T3.1: 4] Reward progression through curriculum (certification or HR).
Knowledge is its own reward, but progression through the security curriculum brings other benefits, too, such
as career advancement. The reward system can be formal and lead to a certification or an official mark in the
HR system, or it can be less formal and include motivators such as documented praise at annual review time.
Involving a corporate training department and/or HR can make security’s impact on career progression more
obvious, but the SSG should continue to monitor security knowledge in the firm and not cede complete
control or oversight.

[T3.2: 8] Provide training for vendors or outsourced workers.
Spending time and effort helping suppliers get security right at the outset is easier than trying to determine
what went wrong later on, especially if the agile team has sprinted on to other projects. In the best case,
outsourced workers receive the same training given to employees. Training individual contractors is much
more natural than training entire outsource firms and is a reasonable place to start. Of course, it’s important
to train everyone who works on your software, regardless of their employment status.

Train everyone

who works on

your software,

regardless of their

employment status.

Building Security in Maturity Model (BSIMM) Version 9 | 53

[T3.3: 9] Host external software security events.
The organization highlights its security culture as a differentiator by hosting security events featuring external
speakers and content. Good examples of this are Microsoft’s BlueHat and QUALCOMM’s Mobile Security Summit.
Employees benefit from hearing outside perspectives, especially related to fast-moving technology areas. The
organization as a whole benefits from putting its security cred on display (see [SM3.2 Run an external marketing
program]). Events open to just certain small groups will not result in the desired change.

[T3.4: 9] Require an annual refresher.
Everyone involved in the SSDL is required to take an annual
software security refresher course. This refresher keeps the
staff up to date on security and ensures that the organization
doesn’t lose focus due to turnover, evolving methodologies, or
changing deployment models. The SSG might use half a day to
give an update on the security landscape and explain changes
to policies and standards. A refresher can also be rolled out as
part of a firm-wide security day or in concert with an internal
security conference, but it is useful only if it’s fresh.

[T3.5: 5] Establish SSG office hours.
The SSG offers help to any and all comers during an advertised lab period or regularly scheduled office hours.
By acting as an informal resource for people who want to solve security problems, the SSG leverages teachable
moments and emphasizes the carrot over the stick. Office hours might be held one afternoon per week in the
office of a senior SSG member. Roving office hours are also a possibility, with visits to particular product or
application groups by request.

[T3.6: 3] Identify a satellite through training.
The satellite begins as a collection of people scattered across the organization who show an above-average
level of security interest or advanced knowledge of new technology stacks and development methodologies.
Identifying this group proactively is a step toward creating a social network that speeds the adoption of
security into software development. One way to begin is to track the people who stand out during training
courses or office hours (see [SM2.3 Create or grow a satellite]). In general, a volunteer army may be easier to
lead than one that is drafted.

INTELLIGENCE: Attack Models (AM)
Attack Models capture information used to think like an attacker: threat modeling, abuse case
development and refinement, data classification, and technology-specific attack patterns.

AM LEVEL 1
[AM1.2: 75] Create a data classification scheme and inventory.
The organization agrees on a data classification scheme and uses it to inventory its software according to
the kinds of data the software handles, regardless of whether the software is on or off premise. This allows
applications to be prioritized by their data classification. Many classification schemes are possible—one
approach is to focus on PII, for example. Depending on the scheme and the software involved, it could be

Make Sun Tzu

proud by knowing

your enemy.

54 | Building Security in Maturity Model (BSIMM) Version 9

easiest to first classify data repositories and then derive classifications for applications according to the
repositories they use. Other approaches to the problem include data classification according to protection of
intellectual property, impact of disclosure, exposure to attack, relevance to GDPR, or geographic boundaries.

[AM1.3: 38] Identify potential attackers.
The SSG identifies potential attackers in order to understand their motivations and abilities. The outcome of
this exercise could be a set of attacker profiles that include generic sketches for categories of attackers and
more detailed descriptions for noteworthy individuals. In some cases, a third-party vendor might be contracted
to provide this information. Specific and contextual attacker information is almost always more useful than
generic information copied from someone else’s list. Moreover, a list that simply divides the world into insiders
and outsiders won’t drive useful results.

[AM1.5: 53] Gather and use attack intelligence.
The SSG stays ahead of the curve by learning about new types of attacks
and vulnerabilities. The information comes from attending conferences
and workshops, monitoring attacker forums, and reading relevant
publications, mailing lists, and blogs. Make Sun Tzu proud by knowing
your enemy; engage with the security researchers who are likely to
cause you trouble. In many cases, a subscription to a commercial
service provides a reasonable way of gathering basic attack intelligence.
Regardless of its origin, attack information must be made actionable
and useful for software builders and testers.

AM LEVEL 2
[AM2.1: 10] Build attack patterns and abuse cases tied to potential attackers.
The SSG prepares for security testing and architecture analysis by building attack patterns and abuse cases
tied to potential attackers (see [AM1.3 Identify potential attackers]). These resources don’t have to be built from
scratch for every application to be useful. Instead, there could be standard sets for applications with similar
profiles. The SSG will add to the pile based on attack stories. For example, a story about an attack against
a poorly designed cloud application could lead to a cloud security attack pattern that drives a new type of
testing. If a firm tracks fraud and monetary costs associated with particular attacks, this information can be
used to prioritize the process of building attack patterns and abuse cases.

[AM2.2: 10] Create technology-specific attack patterns.
The SSG creates technology-specific attack patterns to capture knowledge about attacks that target particular
technologies. For example, if the organization’s cloud software relies on the cloud vendor’s security apparatus
(e.g., cryptography), the SSG could catalogue the quirks of the crypto package and how it might be exploited.
Attack patterns directly related to the security frontier (e.g., IoT) can be useful as well. Simply republishing a
general guideline (e.g., “Ensure data are protected in transit”) and adding “for mobile applications” on the end
does not constitute a technology-specific attack pattern.

[AM2.5: 16] Build and maintain a top N possible attacks list.
The SSG helps the organization understand attack basics by maintaining a living list of important attacks and
using it to drive change. This list combines input from multiple sources such as observed attacks, hacker
forums, industry trends, new technology stacks or deployment methods in use, etc. It does not need to be
updated with great frequency, and attacks can be coarsely sorted. For example, the SSG might brainstorm
twice per year to create lists of attacks the organization should be prepared to counter “now,” “soon,” and

Don’t just

build an

attack list;

use it.

Building Security in Maturity Model (BSIMM) Version 9 | 55

“someday.” In some cases, attack model information is used in a list-based approach to architecture analysis,
helping focus the analysis as in the case of STRIDE. Don’t just build the list; use it.

[AM2.6: 14] Collect and publish attack stories.
To maximize the benefit from lessons that don’t always come cheap, the SSG collects and publishes stories
about attacks against the organization. Both successful and unsuccessful attacks can be noteworthy, and
discussing historical information about software attacks has the added effect of grounding software security
in a firm’s reality. This is particularly useful in training classes, to help counter a generic approach that’s overly
focused on top 10 lists or irrelevant and outdated platform attacks (see [T1.6 Create and use material specific to
company history]). Hiding information about attacks from people building new systems does nothing to garner
positive benefit from a negative happenstance.

[AM2.7: 11] Build an internal forum to discuss attacks.
The organization has an internal forum where the SSG, the satellite, and others discuss attacks and attack
methods. The forum serves to communicate the attacker perspective. The SSG could also maintain an internal
mailing list where subscribers discuss the latest information on publicly known incidents. Dissection of attacks
and exploits that are relevant to a firm are particularly helpful when they spur discussion of development
mitigations. Simply republishing items from public mailing lists doesn’t achieve the same benefits as active
discussion, nor does a closed discussion hidden from those actually creating code. Everyone should feel free to
ask questions and learn about vulnerabilities and exploits. Vigilance means never getting too comfortable (see
[SR1.2 Create a security portal]).

AM LEVEL 3
[AM3.1: 4] Have a science team that develops new attack methods.
The SSG has a science team that works to identify and defang new classes of attacks before real attackers even
know that they exist. Because the security implications of new technologies have not been fully explored in
the wild, doing it yourself is sometimes the best way forward. This isn’t a penetration testing team finding new
instances of known types of weaknesses—it’s a research group that innovates new types of attacks. A science
team may include well-known security researchers who publish their findings at conferences like DEF CON.

[AM3.2: 2] Create and use automation to mimic attackers.
The SSG arms testers with automation to mimic what attackers are going to do. For example, a new attack
method identified by the science team could require a new tool, so the SSG packages the new tool and
distributes it to testers. The idea here is to push attack capability past what typical commercial tools and
offerings encompass, and then repurpose that information for others to use. Tailoring these new tools to a firm’s
particular technology stacks and potential attackers is a good idea as well. When technology stacks and coding
languages are evolving faster than vendors can innovate, creating your own tools might be the best way forward.

INTELLIGENCE: Security Features & Design (SFD)
The Security Features & Design practice is charged with creating usable security patterns for
major security controls (meeting the standards defined in the Standards & Requirements practice),
building middleware frameworks for those controls, and creating and publishing proactive
security guidance.

56 | Building Security in Maturity Model (BSIMM) Version 9

SFD LEVEL 1
[SFD1.1: 95] Build and publish security features.
Some problems are best solved only once. Rather than
have each project team implement all of their own
security features (e.g., authentication, role management,
key management, audit/log, cryptography, protocols),
the SSG provides proactive guidance by building and
publishing security features for other groups to use.
Generic security features often have to be tailored
for specific platforms, such as mobile. For example, a
mobile crypto feature will need at least two versions to cover Android and iOS if it uses low-level system calls.
Project teams benefit from implementations that come preapproved by the SSG, and the SSG benefits by not
having to repeatedly track down the kinds of subtle errors that often creep into security features. The SSG can
identify an implementation that it likes and promote it as the accepted solution.

[SFD1.2: 70] Engage SSG with architecture.
Security is a regular topic in the organization’s software architecture discussion, and the architecture group
takes responsibility for security the same way in which it takes responsibility for performance, availability,
or scalability. One way to keep security from falling out of this discussion is to have an SSG member attend
regular architecture meetings. In other cases, enterprise architecture can help the SSG create secure designs
that integrate properly into corporate design standards. Proactive engagement by the SSG is key to success.
Moving a well-known system to the cloud means reengaging the SSG, for example. Assume nothing.

SFD LEVEL 2
[SFD2.1: 34] Build secure-by-design middleware frameworks and common libraries.
The SSG takes a proactive role in software design by building or providing pointers to secure-by-design
middleware frameworks or common libraries. In addition to teaching by example, this middleware aids
architecture analysis and code review because the building blocks make it easier to spot errors. For example,
the SSG could modify a popular web framework, such as Spring, to make it easy to meet input validation
requirements. Eventually, the SSG can tailor code review rules specifically for the components it offers (see
[CR3.1 Use automated tools with tailored rules]). When adopting a middleware framework (or any other widely
used software), careful vetting for security before publication is important. Encouraging adoption and use of
insecure middleware does not help the software security situation. Generic open source software security
architectures, including OWASP ESAPI, should not be considered secure by design. Bolting security on at the
end by calling a library is not the way to approach secure design.

[SFD2.2: 46] Create SSG capability to solve difficult design problems.
When the SSG is involved early in a new project process, it contributes to new architecture and solves difficult
design problems, minimizing the negative impact that security has on other constraints (time to market,
price, etc.). If a skilled security architect from the SSG is involved in the design of a new protocol, he or she
could analyze the security implications of existing protocols and identify elements that should be duplicated
or avoided. Likewise, having a security architect understand the security implications of moving a seemingly
well-understood application to the cloud saves a lot of headaches later. Designing for security up front is more
efficient than analyzing an existing design for security and then refactoring when flaws are uncovered. Of
course, even the best expert might not scale to cover the needs of an entire software portfolio. Some design
problems will require specific expertise outside of the SSG.

Proactive

engagement by the

SSG is key to success.

Assume nothing.

Building Security in Maturity Model (BSIMM) Version 9 | 57

SFD LEVEL 3
[SFD3.1: 9] Form a review board or central committee to approve and maintain
secure design patterns.
A review board or central committee formalizes the process for reaching consensus on design needs and security
tradeoffs. Unlike the architecture committee, this group is specifically focused on providing security guidance and
also periodically reviews already published design standards (especially around authentication, authorization,
and cryptography) to ensure that design decisions do not become stale or out of date. Moreover, a review board
can help control the chaos often associated with the adoption of new technologies when development groups
might otherwise head out into the wild on their own without ever engaging the SSG.

[SFD3.2: 9] Require use of approved security features and frameworks.
Implementers take their security features and frameworks from an approved list. There are two benefits to
this activity: developers do not spend time reinventing existing capabilities, and review teams do not have
to contend with finding the same old defects in brand new projects or when new platforms are adopted.
In particular, the more a project uses proven components, the easier the architecture analysis and code
review become (see [AA1.1 Perform security feature review]). Reuse is a major advantage of consistent
software architecture and is particularly helpful for agile
development and velocity maintenance in CI/CD pipelines.

[SFD3.3: 2] Find and publish mature design
patterns from the organization.
The SSG fosters centralized design reuse by collecting
design patterns from across the organization and
publishing them for everyone to use. A section of the
SSG website could promote positive elements identified
during architecture analysis so that good ideas are
spread. This process should be formalized: an ad hoc,
accidental noticing is not sufficient. In some cases, a
central architecture or technology team can facilitate and
enhance this activity. Common design patterns make development faster, such as using secure design patterns
for all software, not just applications (microservices, APIs, frameworks, infrastructure, and automation).

INTELLIGENCE: Standards & Requirements (SR)
The Standards & Requirements practice involves eliciting explicit security requirements from
the organization, determining which COTS to recommend, building standards for major security
controls (such as authentication, input validation, and so on), creating security standards for
technologies in use, and creating a standards review board.

SR LEVEL 1
[SR1.1: 75] Create security standards.
Software security requires much more than security features, but security features are part of the job as
well. The SSG meets the organization’s demand for security guidance by creating standards that explain the

Standards that are

not widely adopted

and enforced are

not really standards.

58 | Building Security in Maturity Model (BSIMM) Version 9

accepted way to adhere to policy and carry out specific security-centric operations. A standard might describe
how to perform authentication on an Android device or how to determine the authenticity of a software
update (see [SFD1.1 Build and publish security features] for one case where the SSG provides a reference
implementation of a security standard). Often, software that is not an application requires its own standard
(e.g., an API or a microservices architecture). Standards can be deployed in a variety of ways. In some cases,
standards and guidelines can be automated in development environments (e.g., worked into an IDE), but in
others, guidance can be explicitly linked to code examples or even containers to make them more actionable
and relevant. Standards that are not widely adopted and enforced are not really standards.

[SR1.2: 78] Create a security portal.
The organization has a well-known central location for information about software security. Typically, this is an
internal website maintained by the SSG that people refer to for the latest and greatest on security standards
and requirements, as well as for other resources provided by the SSG (e.g., training). An interactive wiki is
better than a static portal with guideline documents that rarely change. Organizations can supplement these
materials with mailing lists and face-to-face meetings.

[SR1.3: 76] Translate compliance constraints to requirements.
Compliance constraints are translated into software requirements for individual projects. This is a linchpin in
the organization’s compliance strategy: by representing compliance constraints explicitly with requirements,
the organization demonstrates that compliance is a manageable task. For example, if the organization
routinely builds software that processes credit card transactions, PCI DSS compliance could play a role
in the SSDL during the requirements phase. In other cases, technology standards built for international
interoperability can include security guidance. Representing these standards as requirements helps with
traceability and visibility in the event of an audit. It’s particularly useful to codify the requirements in
reusable code or containers.

SR LEVEL 2
[SR2.2: 38] Create a standards review board.
The organization creates a standards review board to formalize the process used to develop standards and
ensure that all stakeholders have a chance to weigh in. The review board could operate by appointing a
champion for any proposed standard, putting the onus on the champion to demonstrate that the standard
meets its goals and to get approval and buy-in from the review board. Enterprise architecture or enterprise
risk groups sometimes take on the responsibility of creating and managing standards review boards.

[SR2.3: 23] Create standards for technology stacks.
The organization standardizes on specific technology stacks. For the SSG, this means a reduced workload
because the group does not have to explore new technology risks for every new project. Ideally, the
organization will create a secure base configuration for each technology stack, further reducing the amount
of work required to use the stack safely. A stack might include an operating system, a database, an application
server, and a runtime environment for a managed language. The security frontier is a good place to find
traction. Currently, mobile technology stacks and platforms as well as cloud-based technology stacks are
areas where specific attention to security particularly pays off.

[SR2.4: 39] Identify open source.
The first step toward managing the risk introduced by open source is to identify the open source components
in use across the portfolio and really understand the dependencies. It’s not uncommon to discover old
versions of components with known vulnerabilities or multiple versions of the same component. Automated

Building Security in Maturity Model (BSIMM) Version 9 | 59

tools for finding open source, whether whole components
or large chunks of borrowed code, are one way to
approach this activity. An informal annual review or
a process that relies solely on developers asking for
permission does not generate satisfactory results. At the
next level of maturity, this activity is subsumed by a policy
constraining the use of open source.

[SR2.5: 29] Create SLA boilerplate.
The SSG works with the legal department to create
standard SLA boilerplate that is used in contracts with vendors and outsource providers (including cloud
providers) to require software security efforts. The legal department understands that the boilerplate also
helps prevent compliance and privacy problems. Under the agreement, vendors and outsource providers
must meet company-mandated software security standards (see [CP2.4 Include software security SLAs in all
vendor contracts]). Boilerplate language might call for software security vendor management solutions, such as
vBSIMM measurements or BSIMM scores.

SR LEVEL 3
[SR3.1: 17] Control open source risk.
The organization has control over its exposure to the vulnerabilities that come along with using open source
components and their army of dependencies. Use of open source could be restricted to predefined projects
or to open source versions that have been through an SSG security screening process, had unacceptable
vulnerabilities remediated, and are made available only through internal repositories. The legal department
often spearheads additional open source controls due to the “viral” license problem associated with GPL code.
In general, getting the legal department to understand security risks can help move an organization to improve
its open source practices. Of course, this control must be applied across the software portfolio.

[SR3.2: 10] Communicate standards to vendors.
The SSG works with vendors to educate them and promote the organization’s security standards. A healthy
relationship with a vendor cannot be guaranteed through contract language alone. The SSG engages with
vendors, discusses vendor security practices, and explains in concrete terms (rather than legalese) what the
organization expects of its vendors. Any time a vendor adopts the organization’s security standards, it’s a
clear win. When a firm’s SSDL is available publicly, communication regarding software security expectations is
easier. Likewise, sharing internal practices and measures can make expectations clear. Don’t work with
a vendor that has worse security policies than you do.

[SR3.3: 10] Use secure coding standards.
Secure coding standards help developers avoid the most obvious bugs and provide ground rules for code
review. Secure coding standards are necessarily specific to a programming language or platform, and they
can address the use of popular frameworks and libraries, but mobile platforms need their own specific coding
standards. If the organization already has coding standards for other purposes, the secure coding standards
should build upon them. A clear set of secure coding standards is a good way to guide both manual and
automated code review, as well as to beef up security training with relevant examples. Remember, guidance
does not a standard make.

Guidance does not a

standard make.

60 | Building Security in Maturity Model (BSIMM) Version 9

</> SSDL TOUCHPOINTS: Architecture Analysis (AA)
Architecture Analysis encompasses capturing software architecture in concise diagrams, applying
lists of risks and threats, adopting a process for review (such as STRIDE or Architecture Risk
Analysis), and building an assessment and remediation plan for the organization.

AA LEVEL 1
[AA1.1: 101] Perform security feature review.
To get started in architecture analysis, center the process on a review of security features. Security-aware
reviewers identify the security features in an application (authentication, access control, use of cryptography,
etc.) and then study the design looking for problems that would cause these features to fail at their purpose
or otherwise prove insufficient. For example, a system that was subject to escalation of privilege attacks
because of broken access control or a mobile application that stashed away PII on local storage would both be
identified in this kind of review. At higher levels of maturity, the activity of reviewing features is eclipsed by a
more thorough approach to AA. In some cases, use of the firm’s secure-by-design components can streamline
this process.

[AA1.2: 33] Perform design review for high-risk applications.
The organization learns about the benefits of AA by seeing real results for a few high-risk, high-profile
applications. The reviewers must have some experience performing detailed design review and breaking the
architecture under consideration, especially for new platforms or environments. In all cases, the design review
produces a set of architecture flaws and a plan to mitigate them. If the SSG is not yet equipped to perform an
in-depth AA, it uses consultants to do this work. Ad hoc review paradigms that rely heavily on expertise can
be used here, although they do not scale in the long run. A review focused only on whether a software project
has performed the right process steps will not generate expected results. Note that a sufficiently robust design
review process cannot be executed at CI/CD speed.

[AA1.3: 27] Have SSG lead design review efforts.
The SSG takes a lead role in AA by performing a design review to uncover flaws. Breaking down an architecture
is enough of an art that the SSG must be proficient at it before it can turn the job over to the architects, and
proficiency requires practice. The SSG cannot be successful on its own, either; it will likely need help from architects
or implementers to understand the design. With a clear design in hand, the SSG might carry out the detailed review
with a minimum of interaction with the project team. At
higher levels of maturity, the responsibility for leading review
efforts shifts toward software architects. Approaches to AA,
including threat modeling, evolve over time, so it is wise to
not expect to set a process and use it forever.

[AA1.4: 57] Use a risk questionnaire to
rank applications.
To facilitate security feature and design review processes,
the SSG uses a risk questionnaire to collect basic
information about each application so it can determine
a risk classification and prioritization scheme. Questions might include, “Which programming languages is
the application written in?”, “Who uses the application?”, and “Is the application deployed in a container?” A
qualified member of the application team completes the questionnaire, which should be short enough that it

Do not expect to

set a process and

use it forever.

Building Security in Maturity Model (BSIMM) Version 9 | 61

can be completed in a matter of minutes. The SSG might use the answers to categorize the application as high,
medium, or low risk. Because a risk questionnaire can be easy to game, it’s important to put into place some
spot-checking for validity and accuracy. An overreliance on self-reporting or automation can render this activity
impotent.

AA LEVEL 2
[AA2.1: 15] Define and use AA process.
The SSG defines and documents a process for AA and applies it in the design reviews it conducts to find
flaws. This process includes a standardized approach for thinking about attacks, security properties, and the
associated risk, and it is defined rigorously enough that people outside the SSG can be taught to carry it out.
Particular attention should be paid to documentation of both the architecture under review and any security
flaws uncovered. Tribal knowledge doesn’t count as a defined process. Microsoft’s STRIDE and Synopsys’ ARA
are examples of this process, although even these two methodologies for AA have evolved greatly over time.

[AA2.2: 14] Standardize architectural descriptions (including data flow).
Defined AA processes (see [AA2.1 Define and use AA process]) use an agreed-upon format to describe
architecture, including a means for representing data flow. This format, combined with a documented AA
process, makes AA tractable for people who are not security experts. In the case of cloud applications, data
are likely to flow across the Internet, so a network diagram is useful in this case, but the description should go
into detail about how the software itself is structured. A standard architecture description can be enhanced
to provide an explicit picture of information assets that require protection. Standardized icons that are
consistently used in UML diagrams, Visio templates, and whiteboard squiggles are especially useful, too.

AA LEVEL 3
[AA3.1: 4] Have software architects lead design review efforts.
Software architects throughout the organization lead the AA process most of the time. Although the SSG still
might contribute to AA in an advisory capacity or under special circumstances, this activity requires a well-
understood and well-documented process (see [AA2.1 Define and use AA process]). Even then, consistency is
difficult to attain because breaking architecture requires experience.

[AA3.2: 2] Drive analysis results into standard architecture patterns.
Failures identified during AA are fed back to the security design committee so that similar mistakes can
be prevented in the future through improved design patterns (see [SFD3.1 Form a review board or central
committee to approve and maintain secure design patterns]). Security design patterns can interact in surprising
ways that break security. The AA process should be applied even when vetted design patterns are
in standard use.

[AA3.3: 3] Make the SSG available as an AA resource or mentor.
To build an AA capability outside of the SSG, the SSG advertises itself as a resource or mentor for teams who
ask for help in using the AA process (see [AA2.1 Define and use AA process]) to conduct their own design review.
The SSG will answer AA questions during office hours and, in some cases, might assign someone to sit with
the architect for the duration of the analysis. In the case of high-risk software, the SSG plays a more active
mentorship role in applying the AA process.

62 | Building Security in Maturity Model (BSIMM) Version 9

</> SSDL TOUCHPOINTS: Code Review (CR)
The Code Review practice includes use of code review tools, development of tailored rules,
customized profiles for tool use by different roles (for example, developers versus auditors),
manual analysis, and tracking/measuring results.

CR LEVEL 1
[CR1.2: 82] Have the SSG perform ad hoc review.
The SSG performs an ad hoc code review for high-risk applications in an opportunistic fashion, such as by
following up the design review for high-risk applications with a code review. At higher maturity levels, this
informal targeting is replaced with a systematic approach. SSG
review could involve the use of specific tools and services,
or it might be manual, but it has to be proactive. When new
technologies pop up, new approaches to code review might
become necessary.

[CR1.4: 76] Use automated tools along with manual
review.
Incorporate static analysis into the code review process to
make code review more efficient and more consistent. The
automation doesn’t replace human judgment, but it does
bring definition to the review process and security expertise
to reviewers who are not security experts. Note that a specific tool might not cover an entire portfolio,
especially when new languages are involved, but that’s no excuse not to review the code. A firm may use an
external service vendor as part of a formal code review process for software security, and this service should
be explicitly connected to a larger SSDL applied during software development, not just used to “check the
security box” on the path to deployment.

[CR1.5: 40] Make code review mandatory for all projects.
Code review is a mandatory release gate for all projects under the SSG’s purview. Lack of code review or
unacceptable results will stop a release or slow it down. While all projects must undergo code review, the
review process might be different for different kinds of projects. The review for low-risk projects might rely
more heavily on automation, for example, whereas high-risk projects might have no upper bound on the
amount of time spent by reviewers. In most cases, a code review gate with a minimum acceptable standard
forces projects that don’t pass to be fixed and reevaluated before they ship. A code review tool with nearly all
the rules turned off so it can run at CI/CD automation speeds won’t provide sufficient defect coverage.

[CR1.6: 44] Use centralized reporting to close the knowledge loop and drive training.
The bugs found during code review are tracked in a centralized repository that makes it possible to do both
summary and trend reporting for the organization. Code review information can be incorporated into a CISO-
level dashboard that includes feeds from other parts of the security organization (e.g., penetration tests,
security testing, black-box testing, and white-box testing). The SSG can also use the reports to demonstrate
progress and drive the training curriculum (see [SM2.5 Identify metrics and use them to drive budgets]). Individual
bugs make excellent training examples.

Individual bugs

make excellent

training examples.

Building Security in Maturity Model (BSIMM) Version 9 | 63

CR LEVEL 2
[CR2.5: 28] Assign tool mentors.
Mentors are available to show developers how to get the most out of code review tools. If the SSG is most
skilled with the tools, it could use office hours to help developers establish the right configuration or get
started interpreting results. Alternatively, someone from the SSG might work with a development team for the
duration of the first review they perform. Centralized use of a tool can be distributed into the development
organization over time through the use of tool mentors. Providing installation instructions and URLs to
centralized tools does not count as mentoring.

[CR2.6: 20] Use automated tools with tailored rules.
Customize static analysis to improve efficiency and reduce false positives. Use custom rules to find errors
specific to the organization’s coding standards or custom middleware. Turn off checks that aren’t relevant.
The same group that provides tool mentoring will likely spearhead the customization. Tailored rules can be
explicitly tied to proper usage of technology stacks in a positive sense and avoidance of errors commonly
encountered in a firm’s code base in a negative sense.

[CR2.7: 25] Use a top N bugs list (real data preferred).
The SSG maintains a list of the most important kinds of bugs that
it wants to eliminate from the organization’s code and uses it to
drive change. It’s okay to start with a generic list pulled from public
sources, but a list is much more valuable if it’s specific to the
organization and built from real data gathered from code review,
testing, software composition analysis, and actual incidents. The
SSG can periodically update the list and publish a “most wanted”
report. (For another way to use the list, see [T1.6 Create and use
material specific to company history]). Some firms use multiple
tools and real code base data to build top N lists, not constraining
themselves to a particular service or tool. One potential pitfall with
a top N list is the problem of “looking for your keys only under the
street light”—that is, it only includes known problems. For example, the OWASP Top 10 list rarely reflects an
organization’s bug priorities. Simply sorting the day’s bug data by number of occurrences doesn’t produce a
satisfactory top N list because these data change so often. A top N bugs list should be used to kill bugs.

CR LEVEL 3
[CR3.2: 4] Build a factory.
Combine assessment results so that multiple analysis techniques feed into one reporting and remediation
process. The SSG might write scripts to invoke multiple detection techniques automatically and combine the
results into a format that can be consumed by a single downstream review and reporting solution. Analysis
engines may combine static and dynamic analysis, and different review streams, such as mobile versus
standard approaches, can be unified with a factory. The tricky part of this activity is normalizing vulnerability
information from disparate sources that use conflicting terminology. In some cases, using a standardized
taxonomy (perhaps a CWE-like approach) can help with normalization. Combining multiple sources helps
drive better-informed risk mitigation decisions.

A top N bugs

list should

be used to

kill bugs.

64 | Building Security in Maturity Model (BSIMM) Version 9

[CR3.3: 1] Build a capability for eradicating specific bugs from the entire codebase.
When a new kind of bug is found, the SSG writes rules to find it and uses the rules to identify all occurrences
of the new bug throughout the entire codebase. It’s possible to eradicate the bug type entirely without waiting
for every project to reach the code review portion of its lifecycle. A firm with only a handful of software
applications will have an easier time with this activity than firms with a large number of large applications.

[CR3.4: 4] Automate malicious code detection.
Automated code review is used to identify dangerous code written by malicious in-house developers or
outsource providers. Examples of malicious code that could be targeted include back doors, logic bombs, time
bombs, nefarious communication channels, obfuscated program logic, and dynamic code injection. Although
out-of-the-box automation might identify some generic malicious-looking constructs, custom rules for static
analysis tools used to codify acceptable and unacceptable code patterns in the organization’s codebase will
quickly become a necessity. Manual code review for malicious code is a good start, but it is insufficient to
complete this activity.

[CR3.5: 3] Enforce coding standards.
A violation of the organization’s secure coding standards is sufficient grounds for rejecting a piece of code.
Code review is objective—it shouldn’t devolve into a debate about whether or not bad code is exploitable. The
enforced portion of the standard could start out being as simple as a list of banned functions. In some cases,
coding standards for developers are published specific to technology stacks (for example, guidelines for C++,
Spring, or Swift) and then enforced during the code review process or directly in the IDE. Standards can be
positive (“do it this way”) or negative (“do not use this API”).

</>
SSDL TOUCHPOINTS: Security Testing (ST)
The Security Testing practice is concerned with prerelease testing, including integrating security into
standard QA processes. The practice includes use of black-box security tools (including fuzz testing)
as a smoke test in QA, risk-driven white-box testing, application of the attack model, and code
coverage analysis. Security testing focuses on vulnerabilities in construction.

ST LEVEL 1
[ST1.1: 100] Ensure QA supports edge/boundary value condition testing.
The QA team goes beyond functional testing to perform basic adversarial tests and probe simple edge
cases and boundary conditions, no attacker skills required. When QA understands the value of pushing past
standard functional testing using acceptable input, it begins to move slowly toward thinking like an adversary.
A discussion of boundary value testing leads naturally to the notion of an attacker probing the edges on
purpose. What happens when you enter the wrong password over and over?

[ST1.3: 88] Drive tests with security requirements and security features.
Testers target declarative security mechanisms with tests derived from requirements and security features.
A tester could try to access administrative functionality as an unprivileged user, for example, or verify that
a user account becomes locked after some number of failed authentication attempts. For the most part,
security features can be tested in a fashion similar to other software features; security mechanisms based
on requirements such as account lockout, transaction limitations, entitlements, and so on are also tested. Of
course, software security is not security software, but getting started with features is easy. New deployment
models, such as cloud, might require novel test approaches.

Building Security in Maturity Model (BSIMM) Version 9 | 65

PT LEVEL 2
[ST2.1: 30] Integrate black-box security tools into the QA process.
The organization uses one or more black-box security testing tools as part of the QA process. Such tools are
valuable because they encapsulate an attacker’s perspective, albeit generically; tools such as IBM Security
AppScan or Fortify WebInspect are relevant for web applications, and fuzzing frameworks such as Synopsys
Defensics are applicable for most network protocols. In some situations, other groups might collaborate
with the SSG to apply the tools. For example, a testing team could run the tool but come to the SSG for help
interpreting the results. Because of the way testing is integrated into agile development approaches, black-box
tools might be used directly by engineering. Regardless of who runs the black-box tool, the testing should be
properly integrated into the QA cycle of the SSDL.

[ST2.4: 14] Share security results with QA.
The SSG routinely shares results from security reviews
with the QA department. Using security results to inform
and evolve particular testing patterns can be a powerful
mechanism leading to better security testing. CI/CD makes
this easier because of the way testing is integrated in a cross-
functional team. Over time, QA engineers learn the security
mindset, and this activity benefits from an engineering-
focused QA function that is highly technical.

[ST2.5: 12] Include security tests in QA automation.
Security tests run alongside functional tests as part of automated regression testing. In fact, the same
automation framework houses both, and security testing is part of the routine. Security tests can be driven
from abuse cases identified earlier in the lifecycle or tests derived from creative tweaks of functional tests.

[ST2.6: 13] Perform fuzz testing customized to application APIs.
Test automation engineers or agile team members customize a fuzzing framework to the organization’s APIs.
They could begin from scratch or use an existing fuzzing toolkit, but customization goes beyond creating
custom protocol descriptions or file format templates. The fuzzing framework has a built-in understanding
of the application interfaces it calls into. Test harnesses developed explicitly for particular applications make
good places to integrate fuzz testing.

ST LEVEL 3
[ST3.3: 4] Drive tests with risk analysis results.
Testers use architecture analysis results (see [AA 2.1 Define and use AA process]) to direct their work. If the
architecture analysis concludes that “the security of the system hinges on the transactions being atomic and
not being interrupted partway through,” for example, then torn transactions will become a primary target in
adversarial testing. Adversarial tests like these can be developed according to risk profile, with high-risk flaws
at the top of the list.

[ST3.4: 3] Leverage coverage analysis.
Testers measure the code coverage of their security tests (see [ST2.5 Include security tests in QA automation])
to identify code that isn’t being exercised. Code coverage analysis drives increased security testing depth.
Standard-issue black-box testing tools achieve exceptionally low coverage, leaving a majority of the software
under test unexplored, which is not a testing best practice. Using standard measurements for coverage such
as function coverage, line coverage, or multiple condition coverage is fine.

Software security

is not security

software.

66 | Building Security in Maturity Model (BSIMM) Version 9

[ST3.5: 3] Begin to build and apply adversarial security tests (abuse cases).
Testing begins to incorporate test cases based on abuse cases (see [AM2.1 Build attack patterns and abuse
cases tied to potential attackers]), and testers move beyond verifying functionality and take on the attacker’s
perspective. One way to do this is to systematically attempt to replicate incidents from the organization’s
history. Abuse and misuse cases based on the attacker’s perspective can also be driven from security policies,
attack intelligence, and standards. This turns the corner from testing features to attempting to break the
software under test.

DEPLOYMENT: Penetration Testing (PT)
The Penetration Testing practice involves standard outside → in testing of the sort carried out by
security specialists. Penetration testing focuses on vulnerabilities in the final configuration and
provides direct feeds to defect management and mitigation.

PT LEVEL 1
[PT1.1: 105] Use external penetration testers to find problems.
Many organizations aren’t willing to address software
security until there’s unmistakable evidence that the
organization isn’t somehow magically immune to the
problem. If security has not been a priority, external
penetration testers can demonstrate that the organization’s
code needs help. Penetration testers could be brought in
to break a high-profile application to make the point. Over
time, the focus of penetration testing moves from “I told you
our stuff was broken” to a smoke test and sanity check done
before shipping. External penetration testers bring a new set
of eyes to the problem.

[PT1.2: 89] Feed results to the defect management
and mitigation system.
Penetration testing results are fed back to development through established defect management or mitigation
channels, and development responds via a defect management and release process. Emailing them around
doesn’t count. Properly done, the exercise demonstrates the organization’s ability to improve the state
of security, and many firms are beginning to emphasize the critical importance of not just identifying but
actually fixing security problems. One way to ensure attention is to add a security flag to the bug-tracking and
defect management system. Evolving DevOps and integrated team structures do not eliminate the need for
formalized defect management systems.

[PT1.3: 74] Use penetration testing tools internally.
The organization creates an internal penetration testing capability that uses tools. This capability can be part of
the SSG or part of a specialized team elsewhere in the organization, with the tools improving the efficiency and
repeatability of the testing process (and frequently being a necessary part of CI/CD environments). Tools can
include off-the-shelf products, standard-issue network penetration tools that understand the application layer,
and handwritten scripts. Free-time or crisis-driven efforts do not constitute an internal capability.

If your penetration

tester doesn’t

ask for the code,

you need a new

penetration tester.

Building Security in Maturity Model (BSIMM) Version 9 | 67

PT LEVEL 2
[PT2.2: 26] Provide penetration testers with all available information.
Penetration testers, whether internal or external, can do deeper analysis and find more interesting problems
after they receive source code, design documents, architecture analysis results, and code review results.
Penetration testers need everything that is created throughout the SSDL. If your penetration tester doesn’t
ask for the code, you need a new penetration tester.

[PT2.3: 21] Schedule periodic penetration tests for application coverage.
The SSG periodically tests all applications in its purview according
to an established schedule, which could be tied to a calendar
or a release cycle. High-profile applications might get a
penetration test at least once a year. This testing serves as a
sanity check and helps ensure that yesterday’s software isn’t
vulnerable to today’s attacks; it also helps maintain the security
of software configurations and environments, especially
containers and components in the cloud. One important aspect
of periodic testing is to make sure that the problems identified
are actually fixed and don’t creep back into the build. New
automation created for CI/CD deserves penetration testing as well.

PT LEVEL 3
[PT3.1: 10] Use external penetration testers to perform
deep-dive analysis.
The organization uses external penetration testers to do deep-
dive analysis for critical projects and to introduce fresh thinking
into the SSG. These testers are experts and specialists who keep the organization up to speed with the latest
version of the attacker’s perspective and have a track record for breaking the type of software being tested.
Skilled penetration testers will always break a system, but the question is whether they demonstrate new
kinds of thinking about attacks that can be useful when designing, implementing, and hardening new systems.
Creating new types of attacks from threat intelligence and abuse cases prevents checklist-driven approaches
that only look for known types of problems; it’s pretty much essential when it comes to new technology.

[PT3.2: 7] Have the SSG customize penetration testing tools and scripts.
The SSG either creates penetration testing tools or adapts publicly available ones to more efficiently and
comprehensively attack the organization’s systems. Tools improve the efficiency of the penetration testing
process without sacrificing the depth of problems that the SSG can identify. Automation can be particularly
valuable under agile methodologies because it helps teams go faster. Tools that can be tailored are always
preferable to generic tools. This activity considers both the depth of tests and their scope.

DEPLOYMENT: Software Environment (SE)
The Software Environment practice deals with OS and platform patching (including in the cloud),
web application firewalls, installation and configuration documentation, containerization,
orchestration, application monitoring, change management, and code signing.

Doing software

security before

network security

is like putting

on pants before

putting on

underwear.

68 | Building Security in Maturity Model (BSIMM) Version 9

SE LEVEL 1
[SE1.1: 58] Use application input monitoring.
The organization monitors the input to the software that it runs in order to spot attacks. For web code, a
web application firewall (WAF) can do the job; other kinds of software likely require other approaches. The
SSG might be responsible for the care and feeding of the system, but incident response is not part of this
activity. Defanged WAFs that write log files can be useful if someone periodically reviews the logs. A WAF that’s
unmonitored makes no noise when an application falls in the woods.

[SE1.2: 104] Ensure host and network security basics are in place.
The organization provides a solid foundation for software by ensuring that host and network security basics
are in place. Operations security teams are usually responsible for patching operating systems, maintaining
firewalls, and properly configuring cloud services, but doing software security before network security is like
putting on pants before putting on underwear.

SE LEVEL 2
[SE2.2: 39] Publish installation guides.
The SSDL requires the creation of an installation guide or a clearly described configuration, such as for a
container, to help deployment teams and operators install and configure the software securely. If special
steps are required to ensure a deployment is secure, the steps are either outlined in the installation guide
or explicitly noted in deployment automation. The guide should include a discussion of COTS components,
too. In some cases, installation guides are distributed to customers who buy the software. Make sure that all
deployment automation can be understood by smart humans and not just by a machine. Evolving DevOps
and integrated team structures do not eliminate the need for human-readable guidance. Of course, secure by
default is always the best way to go.

[SE2.4: 31] Use code signing.
The organization uses code signing for software published across trust boundaries. Code signing is particularly
useful for protecting the integrity of software that leaves the organization’s control, such as shrink-wrapped
applications or thick clients. The fact that some mobile platforms require application code to be signed does
not indicate institutional use of code signing.

SE LEVEL 3

[SE3.2: 17] Use code protection.
To protect intellectual property and make exploit development harder, the organization erects barriers to
reverse engineering. This is particularly important for widely distributed mobile applications. Obfuscation
techniques could be applied as part of the production build and release process. Employing platform-specific
controls such as Data Execution Prevention (DEP), Safe Structured Error Handling (SafeSEH), and Address
Space Layout Randomization (ASLR) can make exploit development more difficult.

Building Security in Maturity Model (BSIMM) Version 9 | 69

[SE3.3: 4] Use application behavior monitoring and diagnostics.
The organization monitors the behavior of production software to look for misbehavior or signs of attack. This
activity goes beyond host and network monitoring to look for software-specific problems, such as indications
of malicious behavior. Intrusion detection and anomaly detection systems at the application level may focus
on an application’s interaction with the operating system (through system calls) or with the kinds of data that
an application consumes, originates, and manipulates.

[SE3.4: 11] Use application containers.
The organization uses application containers to support its software security goals. The primary drivers for
using containers include ease of deployment, a tighter coupling of applications with their dependencies, and
isolation without the overhead of deploying a full OS on a virtual machine. Containers provide a convenient
place for security controls to be applied and updated consistently. The ones used in development or test
environments without reference to security do not count.

[SE3.5: 0] Use orchestration for containers and virtualized environments.
The organization uses automation to scale container and virtual machine deployments in a disciplined way.
Orchestration processes take advantage of built-in and add-on security controls to ensure each deployed
container and virtual machine meets predetermined security requirements. Setting security behaviors in
aggregate allows for rapid change when the need arises. Of course, orchestration platforms are themselves
software that, in turn, requires security patching and configuration. If you use Kubernetes, make sure you
patch Kubernetes.

[SE3.6: 0] Enhance application inventory with operations bill of materials.
A list of applications and their locations in production environments is essential information for any well-run
enterprise (see [CMVM2.3 Develop an operations inventory of applications]). In addition, a manifest detailing the
components, dependencies, configurations, external services, and so on for all production software allows
organizations to secure all the things. That is, to react with agility as attackers and attacks evolve, compliance
requirements change, and the number of items to patch grows quite large. Knowing all the components in
running software—whether they’re in private data centers, in clouds, or sold as box products—allows for
timely response when unfortunate events occur.

[SE3.7: 0] Ensure cloud security basics.
Of course, you already do [SE1.2 Ensure host and network security basics are in place], right? Someone must
ensure that basic requirements are met in cloud deployments as well. In the increasingly software-defined
world, you must explicitly implement security features and controls (some of which may be built in) at least as
good as those built with cables and physical hardware. Nothing is as automatic as it seems.

DEPLOYMENT: Configuration Management & Vulnerability
Management (CMVM)
The Configuration Management & Vulnerability Management practice concerns itself with patching
and updating applications, version control, defect tracking and remediation, and incident handling.

70 | Building Security in Maturity Model (BSIMM) Version 9

CMVM LEVEL 1
[CMVM1.1: 101] Create or interface with incident response.
The SSG is prepared to respond to an incident and is regularly included in the incident response process, either
by creating its own incident response capability or regularly interfacing with the organization’s existing team.
A regular meeting between the SSG and the incident response team can keep information flowing in both
directions. Sometimes cloud service providers need to be looped in as well. In many cases, SSIs evolved from
incident response teams who began to realize that software vulnerabilities were the bane of their existence.

[CMVM1.2: 102] Identify software defects found in operations monitoring and feed them
back to development.
Defects identified through operations monitoring are fed back to development and used to change developer
behavior. The contents of production logs can be revealing (or can reveal the need for improved logging). In
some cases, providing a way to enter incident triage data into an existing bug-tracking system (perhaps making
use of a special security flag) seems to work. The idea is to close the information loop and make sure that
security problems get fixed. In the best of cases, processes in the SSDL can be improved based on operational
data.

CMVM LEVEL 2
[CMVM2.1: 82] Have emergency codebase response.
The organization can make quick code changes when an application is under attack. A rapid-response
team works in conjunction with the application owners and the SSG to study the code and the attack, find a
resolution, and push a patch into production. Often, the emergency response team is the development team
itself, especially when agile methodologies are in use. Fire drills don’t count; a well-defined process is required,
and a process that has never been used might not actually work.

[CMVM2.2: 87] Track software bugs found in operations through the fix process.
Defects found in operations are fed back to development, entered into established defect management
systems, and tracked through the fix process. This capability could come in the form of a two-way bridge
between the bug finders and the bug fixers. Make sure the loop is closed completely. Setting a security flag in
the bug-tracking system can help facilitate tracking.

[CMVM2.3: 57] Develop an operations inventory of applications.
The organization has a map of its software deployments. If a piece of code needs to be changed, Operations
or DevOps can reliably identify all the places where the change needs to be installed. Common components
shared between multiple projects are noted so that, when an error occurs in one application, other
applications that share the same components can be fixed as well. Remember, open source components
are components, too.

CMVM LEVEL 3
[CMVM3.1: 5] Fix all occurrences of software bugs found in operations.
The organization fixes all instances of each bug found during operations, not just the small number of
instances that trigger bug reports. This requires the ability to reexamine the entire codebase when new kinds
of bugs come to light (see [CR3.3 Build capability for eradicating specific bugs from entire codebase]). One way to
approach this is to create a rule set that generalizes a deployed bug into something that can be scanned
for via automated code review.

Building Security in Maturity Model (BSIMM) Version 9 | 71

[CMVM3.2: 7] Enhance the SSDL to prevent software
bugs found in operations.
Experience from operations leads to changes in the SSDL,
which is strengthened to prevent the reintroduction of bugs
found during operations. To make this process systematic,
each incident response postmortem could include a “feedback
to SSDL” step. This works best when root-cause analysis
pinpoints where in the SDLC an error could have been
introduced or slipped by uncaught. Cross-functional DevOps
teams might have an easier time with this because all the
players are involved. An ad hoc approach is not sufficient.

[CMVM3.3: 9] Simulate software crises.
The SSG simulates high-impact software security crises to ensure software incident response capabilities
minimize damage. Simulations could test for the ability to identify and mitigate specific threats or, in other
cases, could begin with the assumption that a critical system or service is already compromised and evaluate
the organization’s ability to respond. When simulations model successful attacks, an important question to
consider is the time required to clean up. Regardless, simulations must focus on security-relevant software
failure and not on natural disasters or other types of emergency response drills. If the data center is burning
to the ground, the SSG won’t be among the first responders.

[CMVM3.4: 13] Operate a bug bounty program.
The organization solicits vulnerability reports from external researchers and pays a bounty for each verified
and accepted vulnerability received. Payouts typically follow a sliding scale linked to multiple factors, such
as vulnerability type (e.g., remote code execution is worth $10,000 versus CSRF is worth $750), exploitability
(demonstrable exploits command much higher payouts), or specific service and software versions (widely-
deployed or critical services warrant higher payouts). Ad hoc or short-duration activities, such as capture-
the-flag contests, do not count.

An ad hoc

approach is not

sufficient.

72 | Building Security in Maturity Model (BSIMM) Version 9

APPENDIX

Adjusting BSIMM8 for BSIMM9
Because the BSIMM is a data-driven model, we have chosen to make adjustments to the model based on the
data observed between BSIMM8 and BSIMM9.

We have added, deleted, and adjusted the levels of various activities based on the data observed as the study
continues. To preserve backward compatibility, all changes are made by adding new activity labels to the
model, even when an activity has simply changed levels. We make changes by considering outliers both in
the model itself and in the levels we assigned in the 12 practices. We use the results of an intralevel standard
deviation analysis to determine which outlier activities to move between levels, focusing on changes that
minimize standard deviation in the average number of observed activities at each level.

Here are the five changes we made according to that paradigm:

1. [SM2.5 Identify metrics and use them to drive budgets] became SM3.3

2. [SR2.6 Use secure coding standards] became SR3.3

3. [SE3.5 Use orchestration for containers and virtualized environments] added to the model

4. [SE3.6 Enhance application inventory with operations bill of materials] added to the model

5. [SE3.7 Ensure cloud security basics] added to the model

We also carefully considered, but did not adjust [T1.6 Create and use material specific to company history].

The activities that are now SM3.3 and SR3.3 both started as level 1 activities. The BSIMM1 activity [SM1.5
Identify metrics and use them to drive budgets] became SM2.5 in BSIMM3 and is now moved to SM3.3.
The BSIMM1 activity [SR1.4 Use coding standards] became SR2.6 in BSIMM6 and is now moved to SR3.3.

We noted in BSIMM7 that, for the first time, one activity [AA3.2 Drive analysis results into standard architecture
patterns], was not observed in the current data set, and there were no new observations of AA3.2 for BSIMM8.
AA3.2 does have two observations in BSIMM9, and there are no activities with zero observations except for
the three just added.

One question that recently came up is, “Where do activities go to die?” We’ve noticed that a handful of activities
have moved from level 1 through level 2 to level 3 for all the wrong reasons. These activities may disappear
in future BSIMM iterations. The two most prominent contenders are [T3.5 Establish SSG office hours] and [T3.6
Identify a satellite through training], both of which appear to be going extinct. Less pronounced, but still worth
noting, are [SM3.3 Identify metrics and use them to drive budgets] and [SR3.3 Use secure coding standards].

Building Security in Maturity Model (BSIMM) Version 9 | 73

116 BSIMM Activities at a Glance
(Red indicates most observed BSIMM activity in that practice)

Level 1 Activities

Governance

Strategy & Metrics (SM)
• Publish process (roles, responsibilities, plan), evolve as necessary. [SM1.1]
• Create evangelism role and perform internal marketing. [SM1.2]
• Educate executives. [SM1.3]
• Identify gate locations, gather necessary artifacts. [SM1.4]

Compliance & Policy (CP)
• Unify regulatory pressures. [CP1.1]
• Identify PII obligations. [CP1.2]
• Create policy. [CP1.3]

Training (T)
• Provide awareness training. [T1.1]
• Deliver role-specific advanced curriculum (tools, technology stacks, and bug parade). [T1.5]
• Create and use material specific to company history. [T1.6]
• Deliver on-demand individual training. [T1.7]

Intelligence

Attack Models (AM)
• Create a data classification scheme and inventory. [AM1.2]
• Identify potential attackers. [AM1.3]
• Gather and use attack intelligence. [AM1.5]

Security Features & Design (SFD)
• Build and publish security features. [SFD1.1]
• Engage SSG with architecture. [SFD1.2]

Standards & Requirements (SR)
• Create security standards. [SR1.1]
• Create a security portal. [SR1.2]
• Translate compliance constraints to requirements. [SR1.3]

74 | Building Security in Maturity Model (BSIMM) Version 9

</>
SSDL Touchpoints

Architecture Analysis (AA)
• Perform security feature review. [AA1.1]
• Perform design review for high-risk applications. [AA1.2]
• Have SSG lead design review efforts. [AA1.3]
• Use a risk questionnaire to rank applications. [AA1.4]

Code Review (CR)
• Have SSG perform ad hoc review. [CR1.2]
• Use automated tools along with manual review. [CR1.4]
• Make code review mandatory for all projects. [CR1.5]
• Use centralized reporting to close the knowledge loop and drive training. [CR1.6]

Security Testing (ST)
• Ensure QA supports edge/boundary value condition testing. [ST1.1]
• Drive tests with security requirements and security features. [ST1.3]

Deployment

Penetration Testing (PT)
• Use external penetration testers to find problems. [PT1.1]
• Feed results to the defect management and mitigation system. [PT1.2]
• Use penetration testing tools internally. [PT1.3]

Software Environment (SE)
• Use application input monitoring. [SE1.1]
• Ensure host and network security basics are in place. [SE1.2]

Configuration Management & Vulnerability Management (CMVM)
• Create or interface with incident response. [CMVM1.1]
• Identify software defects found in operations monitoring and feed them back to

development. [CMVM 1.2]

Level 2 Activities

Governance

Strategy & Metrics (SM)
• Publish data about software security internally. [SM2.1]
• Enforce gates with measurements and track exceptions. [SM2.2]
• Create or grow a satellite. [SM2.3]
• Require security sign-off. [SM2.6]

Building Security in Maturity Model (BSIMM) Version 9 | 75

Compliance & Policy (CP)
• Identify PII data inventory. [CP2.1]
• Require security sign-off for compliance-related risk. [CP2.2]
• Implement and track controls for compliance. [CP2.3]
• Include software security SLAs in all vendor contracts. [CP2.4]
• Ensure executive awareness of compliance and privacy obligations. [CP2.5]

Training (T)
• Enhance satellite through training and events. [T2.5]
• Include security resources in onboarding. [T2.6]

Intelligence

Attack Models (AM)
• Build attack patterns and abuse cases tied to potential attackers. [AM2.1]
• Create technology-specific attack patterns. [AM2.2]
• Build and maintain a top N possible attacks list. [AM2.5]
• Collect and publish attack stories. [AM2.6]
• Build an internal forum to discuss attacks. [AM2.7]

Security Features & Design (SFD)
• Build secure-by-design middleware frameworks and common libraries. [SFD2.1]
• Create SSG capability to solve difficult design problems. [SFD2.2]

Standards & Requirements (SR)
• Create a standards review board. [SR2.2]
• Create standards for technology stacks. [SR2.3]
• Identify open source. [SR2.4]
• Create a SLA boilerplate. [SR2.5]

</>
SSDL Touchpoints

Architecture Analysis (AA)
• Define and use AA process. [AA2.1]
• Standardize architectural descriptions (including data flow). [AA2.2]

Code Review (CR)
• Assign tool mentors. [CR2.5]
• Use automated tools with tailored rules. [CR2.6]
• Use a top N bugs list (real data preferred). [CR2.7]

Security Testing (ST)
• Integrate black-box security tools into the QA process. [ST2.1]
• Share security results with QA. [ST2.4]
• Include security tests in QA automation. [ST2.5]
• Perform fuzz testing customized to application APIs. [ST2.6]

76 | Building Security in Maturity Model (BSIMM) Version 9

Deployment

Penetration Testing (PT)
• Provide penetration testers with all available information. [PT2.2]
• Schedule periodic penetration tests for application coverage. [PT2.3]

Software Environment (SE)
• Publish installation guides. [SE2.2]
• Use code signing. [SE2.4]

Configuration Management & Vulnerability Management (CMVM)
• Have emergency codebase response. [CMVM2.1]
• Track software bugs found in operations through the fix process. [CMVM2.2]
• Develop an operations inventory of applications. [CMVM2.3]

Level 3 Activities

Governance

Strategy & Metrics (SM)
• Use an internal tracking application with portfolio view. [SM3.1]
• Run an external marketing program. [SM3.2]
• Identify metrics and use them to drive budgets. [SM3.3]

Compliance & Policy (CP)
• Create a regulator compliance story. [CP3.1]
• Impose policy on vendors. [CP3.2]
• Drive feedback from SSDL data back to policy. [CP3.3]

Training (T)
• Reward progression through curriculum (certification or HR). [T3.1]
• Provide training for vendors or outsourced workers. [T3.2]
• Host external software security events. [T3.3]
• Require an annual refresher. [T3.4]
• Establish SSG office hours. [T3.5]
• Identify a satellite through training. [T3.6]

Building Security in Maturity Model (BSIMM) Version 9 | 77

Intelligence

Attack Models (AM)
• Have a science team that develops new attack methods. [AM3.1]
• Create and use automation to mimic attackers. [AM3.2]

Security Features & Design (SFD)
• Form a review board or central committee to approve and maintain secure design patterns. [SFD3.1]
• Require use of approved security features and frameworks. [SFD3.2]
• Find and publish mature design patterns from the organization. [SFD3.3]

Standards & Requirements (SR)
• Control open source risk. [SR3.1]
• Communicate standards to vendors. [SR3.2]
• Use secure coding standards. [SR3.3]

</>
SSDL Touchpoints

Architecture Analysis (AA)
• Have software architects lead design review efforts. [AA3.1]
• Drive analysis results into standard architecture patterns. [AA3.2]
• Make the SSG available as an AA resource or mentor. [AA3.3]

Code Review (CR)
• Build a factory. [CR3.2]
• Build a capability for eradicating specific bugs from the entire codebase. [CR3.3]
• Automate malicious code detection. [CR3.4]
• Enforce coding standards. [CR3.5]

Security Testing (ST)
• Drive tests with risk analysis results. [ST3.3]
• Leverage coverage analysis. [ST3.4]
• Begin to build and apply adversarial security tests (abuse cases). [ST3.5]

Deployment
Penetration Testing (PT)

• Use external penetration testers to perform deep-dive analysis. [PT3.1]
• Have the SSG customize penetration testing tools and scripts. [PT3.2]

Software Environment (SE)
• Use code protection. [SE3.2]
• Use application behavior monitoring and diagnostics. [SE3.3]
• Use application containers. [SE3.4]
• Use orchestration for containers and virtualized environments. [SE3.5]
• Enhance application inventory with operations bill of materials. [SE3.6]
• Ensure cloud security basics. [SE3.7]

Configuration Management & Vulnerability Management (CMVM)
• Fix all occurrences of software bugs found in operations. [CMVM3.1]
• Enhance the SSDL to prevent software bugs found in operations. [CMVM3.2]
• Simulate software crises. [CMVM3.3]
• Operate a bug bounty program. [CMVM3.4]

78 | Building Security in Maturity Model (BSIMM) Version 9

Interested in joining the growing BSIMM Community?

Go to www.BSIMM.com

http://www.BSIMM.com

	Prologue
	Part One
	Introduction
	History
	BSIMM9
	Audience
	Method
	Participating Firms
	BSIMM9 Structure
	The Software Security Framework
	The BSIMM9 Skeleton
	Putting BSIMM9 to Use
	What BSIMM9 Tells Us
	Measuring Your Firm with BSIMM9
	BSIMM9 Analysis
	BSIMM Over Time
	BSIMM and Industry Verticals
	BSIMM as a Longitudinal Study
	Emerging Trends in the BSIMM Data
	BSIMM Community

	Part Two
	Roles in a Software Security Initiative
	Executive Leadership
	Software Security Group (SSG)
	Satellite
	Everybody Else
	BSIMM9 Activities
	GOVERNANCE: Strategy & Metrics (SM)
	GOVERNANCE: Compliance & Policy (CP)
	GOVERNANCE: Training (T)
	INTELLIGENCE: Attack Models (AM)
	INTELLIGENCE: Security Features & Design (SFD)
	INTELLIGENCE: Standards & Requirements (SR)
	SSDL TOUCHPOINTS: Architecture Analysis (AA)
	SSDL TOUCHPOINTS: Code Review (CR)
	SSDL TOUCHPOINTS: Security Testing (ST)
	DEPLOYMENT: Penetration Testing (PT)
	DEPLOYMENT: Software Environment (SE)
	DEPLOYMENT: Configuration Management & Vulnerability Management (CMVM)

	Appendix
	Adjusting BSIMM8 for BSIMM9
	116 BSIMM Activities at a Glance

