
Secure Programming Course Proposal: Sample Exam Question

1. (a) CWE/SANS declared the top 5 most dangerous software errors in 2011 as:

1. CWE-89 SQL Injection

2. CWE-78 OS Command Injection

3. CWE-120 Classic Buffer Overflow

4. CWE-79 Cross-site Scripting

5. CWE-306 Missing Authentication for Critical Function

For each error type, give a brief explanation of how you would program
defensively to avoid it. [5 marks]

(b) Imagine that you are working on a Java based web application together
with a colleague. You are writing the front end code and your colleague is
providing the back end for managing the database which stores the appli-
cation data and the user registration information. It was decided to handle
the user information directly in Java with a persistence layer for storing
serialised objects to disk.

Your colleague has proposed a class UserInfo for managing the user infor-
mation and logins. The public methods form the API for using the class
and the interface for your code. A first draft of the source code is shown on
the next page.

Conduct a code review of the UserInfo class, making ten distinct security-
relevant observations. You may include the following kinds of observation:

• security assumptions made by the code and how far these are justified;

• security provisions the code successfully provides and how;

• programming or design flaws that have security implications and how
they might be repaired;

• missing or superfluous functionality; additional recommendations.

Please use line numbers in your answers. Each observation that is relevant
to security and explained with specific reference to the code and the given
scenario will attract 2 marks. If you give more than ten observations, only
the first ten will be considered. [20 marks]

QUESTION CONTINUES ON NEXT PAGE

Page 1 of 5

Secure Programming Course Proposal: Sample Exam QuestionQUESTION CONTINUED FROM PREVIOUS PAGE

1 import java.security.MessageDigest;
2 import java.util.Random;
3 import java.util.Arrays;
4 import java.io.Serializable;
5

6 public final class UserInfo implements Serializable {
7 /* per-user info */
8 private String userName;
9 private String[] userAddress;

10 private boolean authenticated;
11 private final byte[] passwordHash = new byte[16];
12

13 /* shared utilities */
14 private static MessageDigest sha1 = MessageDigest.getInstance("SHA1");
15 private static Random rand = new Random(System.currentTimeMillis());
16

17 /* constructor, assumes user name is well-formed and new */
18 public UserInfo(String name, String[] address, String password) {
19 assert password != null && password.length() >= 8;
20 userName = name; userAddress = address;
21 System.arraycopy(getHash(password),0,passwordHash,
22 0,passwordHash.length);
23 }
24 /* accessors */
25 public String getUserName() { return userName; }
26 public String[] getUserAddress() { return userAddress; }
27 public boolean isAuthenticated() { return authenticated; }
28

29 /* login */
30 public void tryLogin(String inputPassword) {
31 if (Arrays.equals(getHash(inputPassword),passwordHash)) {
32 authenticated = true;
33 }
34 }
35 /* support lost password action */
36 public String resetPassword() {
37 String newPassword = null;
38 if (!authenticated) {
39 newPassword = Integer.toString(rand.nextInt(Integer.MAX_VALUE));
40 byte[] hash = getHash(newPassword);
41 System.arraycopy(hash,0,passwordHash,0,hash.length);
42 }
43 return newPassword;
44 }
45 /* utility */
46 private byte[] getHash(String msg) {
47 sha1.reset();
48 sha1.update(msg.getBytes());
49 return sha1.digest();
50 }
51 }

Page 2 of 5

Secure Programming Course Proposal: Sample Exam Question

1. (a) Briefly:

i. SQL injection, OS Command Injection and Cross-site Scripting are all
avoided by sanitizing inputs, e.g. by quoting and escaping special char-
acters; this should be done anywhere that a prepared query is used, a
command for the Operating System is issued, or some HTML output
is produced that is partially based on user/external content. [3 marks,
ideally some specifics in each case would be given]

ii. Classic Buffer Overflow is avoided simply by checking that whenever in-
put is copied between one location and another, the destination location
is big enough to contain the source data being copied. [1 mark]

iii. Missing Authentication: the programmer should be aware of operations
which are assumed to be allowed only for authorized users, and this
should be enforced in the code path by making sure that authentication
checks are made, or have been made recently. [1 mark]

(b) The given code clearly shows some awareness of security and an attempt to
provide some guarantees. A good answer to this question should pick up
points such as those following.

• Assumptions:

– the code uses language features of Java and assumes these provide
intended encapsulation, i.e., private and final in lines 6, 8-11, 14-
15. This assumption is probably justified although with the JVM’s
dynamic loader it is possible to load additional classes at runtime
and some of the Java-level encapsulation mechanisms are not en-
forced at the bytecode level.

– the code uses a SHA1 message digest which is assumed to prop-
erly implement SHA1, lines 41, 45-47. The precise implementation
of SHA1 that is chosen can be platform dependent, and should be
checked to be a standard trusted version in the deployment environ-
ment.

– the code uses random numbers from java.util.Random, which
is used to generate random numbers when performing password
resets. If an attacker discovers a password, this should give no
help in finding out the next password if a user resets their pass-
word, so this ought to be a cryptographically secure random num-
ber generator. Unfortunately, that guarantee isn’t provided for
java.util.Random.

• Provisions:

– There is an attempt to insist on non-empty passwords at least 8
characters long, although this is flawed: the check on line 19 is
inside an assert statement, but these are only executed when as-
sertion checking is turned on the Java runtime. This check (or an

Page 3 of 5

Secure Programming Course Proposal: Sample Exam Question

improved version to eliminate easily guessed passwords) should not
be optional.

– The design does not store passwords in plaintext, which is a good
defence against mass password theft. Using hashes would not be
necessary if we only relied on the abstraction barriers of the language
(and assume attacks on memory are impossible during execution),
but it is useful because objects are persisted on disk, where they
may be vulnerable to inspection and tampering, depending on the
serialisation mechanism.

• Flaws:

– Although password hashes are stored there is no salting, so an at-
tacker who accesses the persisted object store can perform efficient
offline dictionary attacks.

– Although passwords are obscured on disk, it is likely that user names
and user addresses are not encrypted when in storage, so they may
be read or corrupted.

– The use of reference variables without copying violates the abstrac-
tion boundary. This occurs in two places: on line 11, the user
address reference is copied from the input, and on line 17 the user
address reference is returned to client code. The callee could there-
fore subsequently modify the internal state of the UserInfo.

– The use of Random is flawed by using a seed based on the current
time which is an anti-recommendation for a source of randomness,
because it may be influenced or predicted by an attacker. In this
case it might happen that the attacker could cause the server to
crash and restart, resetting the random seed to some value within a
predictable window.

– The resetPassword method only chooses passwords in a small
space; the reset password on line 39 is simply a number in the range
0 to 32767. Perhaps this is a deliberate choice if it is part of a pol-
icy to make password resets easy (by emailing the user a short-lived
token) but the temporary password ought really to have as much
entropy as an ordinary password.

– The use of a shared static instance for Random is suspect because
a password reset for one user might be used to help predict the
value of a password reset for the next user, especially since the reset
password value is just an integer in the range 0 to 32767.

– The size of the hash value is misunderstood, leading to a buffer over-
flow on line 33. The declared hash is 16 bytes long, corresponding
to a 128-bit hash, whereas SHA-1 is 160-bits (20 bytes) long. This is
simply an outright bug in the code that should be caught by testing,

Page 4 of 5

Secure Programming Course Proposal: Sample Exam Question

because it will lead to an overflow as soon as resetPassword() is
called. But if a bug like this in the password recovery mechanism
escapes early detection it could lead to easy DoS attacks on end
users.

– The class is not thread-safe: if two threads are accessing the same
UserInfo object there can be race conditions, for example, allow-
ing an old password to be using in tryLogin while another thread
has invoked resetPassword meanwhile. Similarly, if two different
UserInfo objects at the same time, there will be race conditions
on the static fields sha1 and rand.

• Additional functionality, recommendations:

– An obvious gap is that once a user is authenticated, there is no way
to log out to reset the authenticated flag.

– Another obvious gap is that the API offers a way for an initial user-
generated password to be given, but there is no way to reset the
password with a user-generated password.

– A general concern on the strategy here is that the authentication
check is separated from its use (TOCTOU), by storing the authenti-
cation flag and leaving any time-out policy to the client code of this
module. A much better approach is to use the scoped permissions
mechanism provided by Java.

[20 marks, following the marking advice given in the question]

Page 5 of 5

