
Project Risk Reduction

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

Dr. David Robertson
dr@inf.ed.ac.uk

http://www.inf.ed.ac.uk/ssp/members/dave.htm

SEOC2 Spring 2005: Risks 1



Project Risk Reduction

If a system is safety or business critical we expect to

identify common risks and their remedies before deploying

the system. The same should be true for SW design

processes.

One way of doing this is through risk reduction patterns,

which identify common sources of project risk and suggest

how to reduce them. The goal is to be able to anticipate

and handle risks gracefully, minimizing the danger to your

project.

SEOC2 Spring 2005: Risks 2



Typical Sources of Risk

• Imperfect knowledge of the problem

• Teamwork difficulties

• Lack of productivity

• Ambiguity over ownership

• Distractions

• Training new team members

• Depending on new, untested technologies

• Depending on external components out of your control

• Falling behind competitors working on similar projects

SEOC2 Spring 2005: Risks 3



Risk Reduction Patterns

These all are taken from members.aol.com/

acockburn/riskcata/riskbook.htm

• Knowledge: Clearing the Fog

• Knowledge: Early and Regular Delivery

• Knowledge: Prototype

• Teaming: Holistic Diversity

• Productivity: Gold Rush

• Ownership: Owner per Deliverable

• Ownership: Function versus Component

• Distractions: Someone Always Makes Progress

• Distractions: Team per Task

• Training: Day Care
SEOC2 Spring 2005: Risks 4



Knowledge: Clearing the Fog

If you don’t know the issues well enough to put together a

sound plan, then try to deliver something (almost

anything). Just trying to do that tells you what the real

issues are. Do this when:

• You need more knowledge to proceed, but

• You have to move forward into the project

SEOC2 Spring 2005: Risks 5



Knowledge: Clearing the Fog
Example

You are considering a serious project using a totally new

language or technology. You don’t know whether to

proceed or how to size the project. So, run a carefully

instrumented, mini-version of the project. Collect data on

staff learning rates, productivity, technology effects. From

this data, you can extrapolate the total effect to your

proposed project.

SEOC2 Spring 2005: Risks 6



Cures versus Overdose

Cures:

• May discover what issues you need to address

• Basis for creating first project plan

Overdose:

• May waste effort in clearing the fog without making

real progress

• Fog clearing becomes an aim in itself

SEOC2 Spring 2005: Risks 7



Knowledge: Early and Regular
Delivery

You don’t know what problems you will encounter during

development, so deliver something early to discover what

you don’t know you don’t know. Deliver regularly and

improve each time. Do this when:

• You are unsure about part of your development

process

• You want to improve and optimize your process

SEOC2 Spring 2005: Risks 8



Knowledge: Early and Regular
Delivery Example

Your boss tells you that the executives only need to see a

release every 10 months. You decide to create internal

releases at 4 months and 7 months. This ensures that you

have identified and reduced the risks for the 10-month

delivery.

SEOC2 Spring 2005: Risks 9



Cures versus Overdose
Cures:

• If you hit an unexpected problem you have lost no
more than the internal delivery period

• You may be able to iron out minor problems in the next
cycle

• A way of gathering solid data early

• Boosts morale if releases make progress

Overdose:

• Cycle too fast and setup/test may eat up your time

• Need effort to monitor fast cycles

• Saps morale if releases are chaotic

SEOC2 Spring 2005: Risks 10



Knowledge: Prototype

You don’t know how some design decision will work out,

so build an isolated solution to discover how it really

works. Do this when:

• You are designing a user interface, or

• You are trying a new database or network technology

or

• You are dependent on a new, critical algorithm

SEOC2 Spring 2005: Risks 11



Knowledge: Prototype Example

You are designing a user interface but probably will not get

the design correct on the first try. You create a paper

prototype in a few hours, or a screen prototype in a few

hours or a day, or a rigged demo using fixed data. You

show this to the users to discover missing information.

SEOC2 Spring 2005: Risks 12



Cures versus Overdose

Cures:

• Small effort for (perhaps) big gains

• Produces hard evidence

Overdose:

• Can develop a “perpetual prototyping” culture —

design keeps shifting because it’s easy to see what

you don’t like, but hard to know when you are done

• Other teams can end up on hold waiting on prototypes

to be approved

SEOC2 Spring 2005: Risks 13



Teaming: Holistic Diversity

Development of a subsystem (a set of functions) needs

many skills, but people specialize, so create a single team

from multiple specialities (e.g. requirements gathering, UI

design). The team should all be able to meet in person,

and should be evaluated as one group. Do this when:

• People seem to be doing “throw it over the wall”
(a.k.a. “passing the buck”) development

• Teams are grouped only by speciality

• People are communicating mainly by writing

• Teams do not appear to respect each other

SEOC2 Spring 2005: Risks 14



Teaming: Holistic Diversity
Example

Those who can do the requirements gathering and

analysis interview people, and investigate interfaces and

options. They communicate the results rapidly,

face-to-face, with the people who navigate the class library

and design classes and frameworks. Teams are formed

consisting of a combined requirements analyst with a few

program designers. These move rapidly through the

design. They have no internal deliverables, but create the

deliverables as required for communication between

teams. Most of the communication is verbal.

SEOC2 Spring 2005: Risks 15



Cures versus Overdose
Cures:

• Fast, rich feedback on decisions within teams

• Reduces risk of people protecting their specialities
against other specialities

• Helps deal with shortage of multi-skilled individuals

• Everyone “designs” in some way

Overdose:

• 1-person teams can’t master all the specialities

• Too-large teams get bogged down in time-lagged chat

• Needs subtle coordination

• People in different teams may blame each other

SEOC2 Spring 2005: Risks 16



Productivity: Gold Rush

You don’t have time to wait for requirements to settle so

start people designing and programming immediately, and

adjust their requirements weekly. Do this when:

• You want design with care, and

• To avoid redoing work, but

• You need the system fast

SEOC2 Spring 2005: Risks 17



Productivity: Gold Rush Example
You start with a rough set of requirements. The designers

quickly get ahead of the requirements people, who are

busy in meetings trying to nail down details of the

requirements. If the designers wait until the requirements

are solid they won’t have enough time to do their work, but

they can guess what the requirements would be like

without knowing final details, so they start design and

programming right away. The requirements people give

them course corrections after each weekly meeting. The

amount of time it takes to incorporate those mid-course

alterations is small compared to the total design time.

SEOC2 Spring 2005: Risks 18



Cures versus Overdose

Cures:

• Downstream people can start on the obvious parts of

their work

• Frequent meetings help guessing about the rest

Overdose:

• Downstream people may get ahead of the stability of

the upstream decisions, so have to redo more work

• In the extreme, final rework gets greater than the total

development time

SEOC2 Spring 2005: Risks 19



Ownership: Owner per Deliverable

Sometimes many people are working on it, sometimes

nobody so make sure every deliverable has exactly one

owner. Do this when:

• You detect a “common area” (chaotic updates with

multiple ownership), or

• You detect an “orphan area” (no ownership), or

• Multiple teams are working on one task, or

• One person is working on many tasks

SEOC2 Spring 2005: Risks 20



Ownership: Owner per Deliverable
Example

You repeatedly find that there is no one person who

answers for the quality and currency of the design

blueprints, the quality an consistency of the user interface,

the program code, or the performance of the system.

SEOC2 Spring 2005: Risks 21



Cures versus Overdose
Cures:

• Resolves issues of who should do things like maintenance

• Helps establish internal integrity of components

Overdose:

• Ownership of everything on the project can be seen by

some people as wonderful, and others as a nuisance

• Ownership may create conflict, so conflict

management saps the team’s energy

• Productivity can get stalled when owners go missing

SEOC2 Spring 2005: Risks 22



Ownership: Function versus
Component

If you organize teams by components, functions suffer,

and vice versa, so make sure every function has an owner

and every component has an owner. Do this when:

• Your teams are organized by function or use case,

with no component ownership, or

• Your teams are organized by class or component with

no function, use case, or user story ownership

SEOC2 Spring 2005: Risks 23



Ownership: Function versus
Component Example

The project starts out with teams centred around classes

or components. At delivery time, the end function does not

work. Each team says, “I thought you were taking care of

that. It doesn’t belong in my class.”

SEOC2 Spring 2005: Risks 24



Cures versus Overdose
Cures:

• Consistency and quality of functions, not just
components

• Assists sharing of components across teams

Overdose:

• Possible friction between function and component
owners

• Interconnections between functions and components
can get confusing

• Ownership by function turns components into commons

• Ownership by components turns functions into orphans

SEOC2 Spring 2005: Risks 25



Distractions: Someone Makes
Progress

r Distractions constantly interrupt your team’s progress so,

whatever happens, ensure someone keeps moving toward

your primary goal. If you do not complete your primary

task, nothing else will matter. Therefore, complete that at

all costs. Do this when:

• Non-primary tasks are dominating the team’s time

• Many people complain of distraction

SEOC2 Spring 2005: Risks 26



Distractions: Someone Makes
Progress Example

In the ancient Greek story, Atalanta was assured by the

gods that she would remain the fastest runner as long as

she remained a virgin so she agreed to marry only the

man who could beat her in a foot race. The losers were to

be killed for wasting her time. The successful young man

was aided by a god, who gave him 3 golden apples. Each

time Atalanta pulled ahead, he tossed an apple in front of

her. While she paused to pick up the golden apple, he

raced ahead.

SEOC2 Spring 2005: Risks 27



Cures versus Overdose
Cures:

• If at least someone is making progress on the primary

task then you are somewhat closer to your final goal

• Allows some attention to every task, including small

diverting ones

Overdose:

• You may eventually get into trouble for not adequately

addressing the distractions

• Too many distractions suggest that there is a deeper

problem
SEOC2 Spring 2005: Risks 28



Distractions: Team per Task

A big diversion hits your team so let a sub-team handle

the diversion, the main team keeps going. Do this when:

• Requirements gathering is taking longer than the

schedule can allow, or

• The version in test needs attention, but so does the

version in development, or

• Your people say “We have too many tasks, causing us

to lose precious design cycles”

SEOC2 Spring 2005: Risks 29



Distractions: Team per Task
Example

You have holistic design teams but each person in the

team is doing requirements, analysis, design and

programming. But requirements meetings become

frequent and it is difficult to switch mode from these

meetings to programming, so little programming is being

done. You allocate members of each team to specialize in

requirements for a while, freeing others to concentrate on

programming.

SEOC2 Spring 2005: Risks 30



Cures versus Overdose

Cures:

• Allows prioritization of tasks within teams

• Helps focus on primary goals

Overdose:

• You may eventually have one-person teams

• Enforced splits may break synergy of teams

SEOC2 Spring 2005: Risks 31



Distractions: Sacrifice One Person

A smaller diversion hits your team so assign just one

person to it until it gets handled. Do this when:

• Diversions as “Team per Task” but

• These are small enough to be handled by individuals and

• They couldn’t be handled easily by allowing switching

between tasks

SEOC2 Spring 2005: Risks 32



Distractions: Sacrifice One
Person Example

Odysseus has to get his ship past Scylla and Charybdis.

Scylla is a six-headed monster, guaranteed to eat six crew

members, but the rest would survive. Charydbis is a

whirlpool guaranteed to destroy the entire ship. Odysseus

sacrifices six people to Scylla.

SEOC2 Spring 2005: Risks 33



Cures versus Overdose

Cures:

• The main group of the team moves forward without

the distraction

• Avoids loss of everyone’s time in task switching

Overdose:

• The person assigned to the distracting task may be

alienated

• If you keep sacrificing individuals you have no one on

the primary task

SEOC2 Spring 2005: Risks 34



Training: Day Care

Your experts are spending all their time mentoring

novices, so put one expert in charge of all the novices,

and let the others develop the system. Do this when:

• You experts say “We are wasting our experts”, or

• “A few experts could do the whole project faster”, but

• You have to add several new people to an existing

project

SEOC2 Spring 2005: Risks 35



Training: Day Care Example

You have put 4 novices under each expert. The experts

now spend the most of their energies training,

halfheartedly. They are caught between trying to get the

maximum out of their trainees and trying to do the

maximum development themselves and neither develop

the system, nor train the novices adequately. You institute

an “apprenticeship” program in which novices are given a

dedicated mentor for 2 weeks out of every 3 for 6 months.

SEOC2 Spring 2005: Risks 36



Cures versus Overdose

Cures:

• Separates “progress” teams from training teams

• Allows selectivity of trainers

• Localizes impact of new recruits

Overdose:

• Can be viewed as “sacrificial”

• Your progress team can dwindle to zero

SEOC2 Spring 2005: Risks 37



Summary

• All projects have risks

• Big risks need to be anticipated and addressed

• Risk patterns help you notice and deal with common

project risks

• Overdoing the correction adds another risk

• Required reading:

http://members.aol.com/acockburn/

riskcata/riskbook.htm

SEOC2 Spring 2005: Risks 38


