
Software Quality and Standards

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

Dr. David Robertson
dr@inf.ed.ac.uk

http://www.inf.ed.ac.uk/ssp/members/dave.htm

SEOC2 Spring 2005: Quality/Standards 1

What is Software Quality?

• High quality software meets the needs of users while

being reliable, well supported, maintainable, portable,

and easily integrated with other tools.

• Is higher quality better? Is it more expensive?

Not always, on both counts.

• We will look at how to achieve quality, the tradeoffs

involved, modeling quality improvement, and standards

designed to ensure quality.

SEOC2 Spring 2005: Quality/Standards 2

Cost/Benefit Tradeoff
Making changes to improve software quality requires time

and money to:

• Spot the problem
• Isolate its source
• Connect it to the real cause
• Fix the requirements, design, and code
• Test the fix for this problem
• Test the fix has not caused new problems
• Change the documentation

For a given change to make sense, the improvement

needs to pay for all these tasks, plus the revenue lost

during the delay in the product release.

SEOC2 Spring 2005: Quality/Standards 3

Feature/Bug Tradeoff

• Meeting the needs of users (not to mention marketing)

requires adding features.

• However, given a fix ed amount of development time and

money, adding features adds bugs and reduces time for

testing.

• Do the features increase user productivity more than the

bugs decrease it?

• Difficult to answer this question, because data on users

is sparse, and other factors like reputation usually take

precedence.
SEOC2 Spring 2005: Quality/Standards 4



Quality for free?

But is increasing quality always more expensive, in terms

of total cost of production and maintenance? No.

In fact, if you focus on quality from the start, then:

• You tend to produce components with fewer defects, so

• You spend less time debugging, so

• You have more time in your schedule for improving

other aspects of quality, like usability

SEOC2 Spring 2005: Quality/Standards 5

Skimp Now, Pay Later

If you don’t focus on product quality then:

• You tend to produce components with more (hidden)

defects, so

• You have to spend more time fi xing these (late), so

• You have little time for anything else, so

• You produce poor quality software even though you

put huge amounts of effort into defect checking.

Thus quality is something that has to be considered

throughout the product lifecycle; it cannot be added in later.

SEOC2 Spring 2005: Quality/Standards 6

Quality Delays are Expensive

Design
review

Code
review

Code Compile Test Use

A
ve

ra
ge

 f
ix

 ti
m

e

Thus it makes sense to focus on improving component

quality before testing, to catch difficult defects early.

SEOC2 Spring 2005: Quality/Standards 7

Better Quality Through Testing?

Humphrey (2002) estimates that experienced software

engineers normally inject 100 or more defects per KLOC.

Perhaps half of these are detected automatically (e.g. by

the compiler).

So a 50 KLOC program probably contains around 2500

defects to find (semi-)manually.

Suppose we need about fiv e hours to find each of these

defects by testing.

That’s over 20000 hours for the whole program - bad

news.
SEOC2 Spring 2005: Quality/Standards 8



Better Quality Through
Inspection?

Code inspection may be able to find up to (say) 70% of

these defects in 0.5 hours per defect.

So the first 1750 defects could take 875 hours; then we

only have 750 to find in testing at (say) 8 hours each.

That’s less than 7000 hours in total - better news.

SEOC2 Spring 2005: Quality/Standards 9

Modeling Quality Improvement

y(N) = r(N)
r(N)+e(N)

where:

• y(N) is fraction of defects removed in step N

• r(N) is the number of defects removed at step N .

• e(N) is the number of defects escaping at step N .

The difficulty with this equation is that we can only

estimate e(N) as a function of e(1), . . . , e(N − 1).

Notice that e(N) can increase when a change injects

defects.
SEOC2 Spring 2005: Quality/Standards 10

Sensitivity to Inspection Yield (1)

Suppose you have 1000 KLOC with an average of 100

defects per KLOC. That’s 100000 defects to find.

Scenario 1:

• You have an inspection process which finds 75% of

these, leaving 25000 to find in test.

• You then use 4 levels of test, each trapping 50% of

remaining defects. That leaves 1562 defects in the

final code.

Sounds good so far...

SEOC2 Spring 2005: Quality/Standards 11

Sensitivity to Inspection Yield (2)

Scenario 2:

• Your inspection process only finds 50% of defects,

leaving 50000 to find in test.

• The same 4 levels of test each trap 50% of remaining

defects. That leaves 3125 defects in the final code.

So a 33% drop in yield in inspection caused a doubling in

the number of remaining defects. Thus the effectiveness

of your inspection process is crucial.

SEOC2 Spring 2005: Quality/Standards 12



Sensitivity to Defect Injection

Assuming we start with no defects, Pi = (1− p)i, where:

• p is the probability of injecting a defect at a stage.

• i is the number of stages.

• P is the probability of a defect-free product at stage i.

A high probability of fault injection in one step radically

drops the overall probability of freedom from defects:

(1 − 0.01)10 = 0.904

(1 − 0.01)9 ∗ (1 − 0.5)1 = 0.4057

This is why cleanrooms are so clean.

SEOC2 Spring 2005: Quality/Standards 13

Sensitivity to Defect Removal

Ri = N ∗ (1 − y)i, where:

• N is the initial number of defects.

• y the fraction of defects removed per stage.

• i is the number of stages.

• Ri is the number of defects remaining at stage i.

Dropping a lot lower on one stage of a high quality defect

removal process has a small effect on overall yield.

100000 ∗ (1 − 0.8)5 = 32

100000 ∗ (1 − 0.8)4 ∗ (1 − 0.4) = 96

Thus being defect-free is better than relying on fix es.
SEOC2 Spring 2005: Quality/Standards 14

Yield Management

If we had no resource limitations then an 80-40

test-inspection yield is no different from a 40-80 yield.

But test defect correction typically involves more labour

than inspection defect correction, so it costs more and the

extra labour means . . . more opportunities for defect

injection.

So manage for maximum return for minimum cost and, if

in doubt, attempt to maximise on early design stages.

SEOC2 Spring 2005: Quality/Standards 15

Better Quality via Standards?
Most products have safety standards, and many have

usability standards, but computer software rarely has such

standards.

Can quality be improved by enforcing standards? Unclear:

• It is very difficult to enforce standards on actual

program behavior

• Standardizing the process can help make sure that no

steps are skipped, but

• Standardizing to an inappropriate process can reduce

productivity, and thus leave less time for quality
SEOC2 Spring 2005: Quality/Standards 16



Software Engineering Standards

According to the IEEE Comp. Soc. Software Engineering

Standards Committee a standard can be:

• An object or measure of comparison that defines or

represents the magnitude of a unit

• A characterization that establishes allowable

tolerances or constraints for categories of items,

• A degree or level of required excellence or attainment

SEOC2 Spring 2005: Quality/Standards 17

Why Bother with Standards?

Prevents idiosyncrasy: e.g. Standards for primitives in
programming languages)

Repeatability: e.g. Repeating complex inspection
processes

Consensus wisdom: e.g. Software metrics

Cross-specialisation: e.g. Software safety standards

Customer protection: e.g. Quality assurance standards

Professional discipline: e.g. V & V standards

Badging: e.g. Capability Maturity Model levels

SEOC2 Spring 2005: Quality/Standards 18

Legal Implications (1)

Comparatively few software products are forced by law to

comply with specific standards, and most have

comprehensive non-warranty disclaimers. However:

• For particularly sensitive applications (e.g. safety

critical) your software will have to meet certain

standards before purchase

• US courts have used voluntary standards to establish

a supplier’s “duty of care”

SEOC2 Spring 2005: Quality/Standards 19

Legal Implications (2)

Adherence to standards is a strong defence against

negligence claims (admissible in court in most US states)

There are instances of faults in products being traced back

to faults in standards, so

Standards writers must themselves be vigilant against

malpractice suits

SEOC2 Spring 2005: Quality/Standards 20



Levels of Standards

Element standards

Principles and objectives

Overall guide

Terminology

Application guides Tools and techniques

SEOC2 Spring 2005: Quality/Standards 20

Some Standards Organizations
ANSI: American National Standards Institute. Does not itself make

standards but approves them

AIAA: American Institute of Aeronautics and Astronautics (e.g.

AIAA R-013-1992 Recommended Practice for Software Reliability).

EIA: Electronic Industries Association (e.g. EIA/IS-632 Systems Engineering)

IEC: International Electrotechnical Commission (e.g. IEC 61508

Functional Safety - Safety-Related Systems)

IEEE: Institute of Electrical and Electronics Engineers Computer Society

Software Engineering Standards Committee (e.g.

IEEE Std 1228-1994 Standard for Software Safety Plans)

ISO: International Organization for Standardization (e.g.

ISO/IEC 2382-7:1989 Vocabulary-Part 7: Computer Programming)
SEOC2 Spring 2005: Quality/Standards 21

Computer Science Standards

Surprisingly few CS standards exist, although one could

argue this is because CS is pervasive in others.

Examples:

Terminology: IEEE Std 610.12:1990 Standard Glossary

of Software Engineering Terminology

Techniques: ISO/IEC 8631:1989 Program Constructs

and Conventions for their Representation

SEOC2 Spring 2005: Quality/Standards 22

Quality Assurance Standards

Differing views of quality standards: taking a systems view

(that good management systems yield high quality); and

taking an analytical view (that good measurement

frameworks yield high quality). Examples:

Quality management: ISO 9000-3 Quality Management

and Quality Assurance Standards - Part 3: Guidelines

for the application of 9001 to the development, supply,

installation and maintenance of computer software

Quality measurement: IEEE Std 1061-1992 Standard

for Software Quality Metrics Methodology
SEOC2 Spring 2005: Quality/Standards 23



Project Management Standards

These are concerned with how general principles of good

management are applied to specific areas of software

engineering.

Examples:

General project management: IEE Std 1058.1-1987

Standard for Software Project Management Plans

Producing plans: IEEE Std 1059-1993 Guide for

Software Verification and Validation Plans

SEOC2 Spring 2005: Quality/Standards 24

Systems Engineering Standards

Particular application domains develop sophisticated

interactions between system and software engineering, so

standardizing from a systems point of view can be

beneficial. Examples:

Lifecycle: ISO/IEC WD 15288 System Life Cycle

Processes

Requirements: IEEE Std 1233-1996 Guide for

Developing System Requirements Specifications

SEOC2 Spring 2005: Quality/Standards 25

Dependability Standards (1)

As hardware dependability has improved, software has

received more attention as a dependability risk.

Dependability of software isn’t just a question of internal

measures (e.g. availability, reliability) but also broader

issues (e.g. maintainability, system context).

Dependability standards often set integrity levels

necessary to maintain system risks within acceptable

limits.

SEOC2 Spring 2005: Quality/Standards 26

Dependability Standards (2)

Examples:

Dependability management: IEC 300-1(1993)

Dependability management Part 1: Dependability

programme management

Risk analysis: IEC 1025(1990) Fault Tree Analysis

Reliability: AIAA R-013-1992 Recommended Practice for

Software Reliability

SEOC2 Spring 2005: Quality/Standards 27



Safety Standards

These traditionally come out of specific industrial sectors

(e.g. American Nuclear Society, UK Ministry of Defence),

since safety requires deep analysis of the domain as well

as the technology. Examples:

Safety plans: IEEE Std 1228-1994 Standard for Software

Safety Plans

Functional safety: IEC 61508 Functional Safety -

Safety-Related Systems

Nuclear domain: IEE 603 Criteria for Safety Systems of

Nuclear Plants
SEOC2 Spring 2005: Quality/Standards 28

Resources Standards

Although software engineering is in flux, it is possible to

standardize on some forms of resources which are used

widely across applications. Examples:

Terminology: IEEE 610,12-1990 Standard Glossary of
Software Engineering terminology

Semantics: IEEE P1320.1 Standard Syntax and
Semantics for IDEF0

Re-use libraries: AIAA G-010-1993 Guide for Reusable
Software: Assessment Criteria for Aerospace
Application

Tools: ISO/IEC 14102:1995 Guideline for the Evaluation
and Selection of CASE tools

SEOC2 Spring 2005: Quality/Standards 29

Product Standards

These focus on the products of software engineering,

rather than on the processes used to obtain them.

Perhaps surprisingly, product standards seem difficult to

obtain. Examples:

Product evaluation: ISO/IEC 14598 Software product

evaluation

Packaging: ISO/IEC 12119:1994 Software Packages -

Quality Requirements and Testing

SEOC2 Spring 2005: Quality/Standards 30

Process Standards

A popular focus of standardization, partly because product

standardization is elusive and partly because much has

been gained by refining process. Much of software

engineering is in fact the study of process. Examples:

Life cycle: ISO/IEC 12207:1995 Information Technology -
Software Life Cycle Processes

Acquisition: ISO/IEC 15026 System and software
Integrity Levels

Maintenance: IEEE Std 1219-1992 Standard for
Software Maintenance

Productivity: IEE Std 1045-1992 Standard for Software
Productivity Metrics

SEOC2 Spring 2005: Quality/Standards 31



Company Guidelines

Specific companies may develop their own guidelines for

system/software design. These define good practice

within a company. They often conform to more general

standards. Example:

Shell UK Code of Practice: Fire and Gas Detection and

Alarm Systems for Offshore Installations. Describes what

a fire and gas alarm system must do; prescribes

properties of that system; sets goals for achieving those

properties; gives examples of typical design solutions.

SEOC2 Spring 2005: Quality/Standards 32

Trends

• Concern about absence of scientific foundation for

standards

• Recognition that standards usually aren’t isolated

• Questioning of software (non)warranty agreements

SEOC2 Spring 2005: Quality/Standards 33

Summary

• It is crucial to think about quality when you start the

project

• More quality is not always better, but it is usually is

• Correcting defects is very different at different stages

• Standards can help ensure consistent quality, but

primarily for process, not product

SEOC2 Spring 2005: Quality/Standards 34

References

Humphrey, W. S. (2002). A Discipline for Software Engineering. Reading,

MA: Addison-Wesley.

SEOC2 Spring 2005: Quality/Standards 34


