Software Engineering with
Objects and Components 2

Dr. James A. Bednar
jbednar@inf.ed.ac.uk
http://homepages.inf.ed.ac.uk/jbednar

SFOC? Snrina 2005

Reality of large projects

| do not personally know of any large-scale commercial

software project that is a success by those criteria.

Instead, failure is ubiquitous (Standish Report, 1994):
e 91% of projects at large companies failed
e 30% of projects at large companies were eventually
cancelled
Rates vary dramatically for other samples and criteria, but
none so far have suggested that a majority of large
projects succeed. In fact, most projects fail in multiple

ways (schedule, budget, and features).

SFOC? Snrina 2005

Welcome to SEOC2!

SEOC?2 is about large-scale, long-term software

development projects.

For the purposes of this course, a software project will be

considered successful if:
e The software is delivered on time
e Development costs were within budget

e The software meets the needs of users

SFOC? Snrina 2005

Reducing the risk of failure

Since at least the 1960s, a variety of software engineering
techniques have been designed to reduce the risk of

failure, albeit with only modest success so far.

This course will survey the approaches available, what

their limitations are, and the prospects for future improvement.

The approaches complement those learned in typical CS
courses, which focus on small-scale, short-lived systems.
Most of the issues are quite high level, not technical, and
depend on how human beings behave rather than on how

to manipulate bits.

SFOC? Snrina 2005




Links to other fields

Psychology Programmer motivation, users’ needs
Sociology Programmer group dynamics

Business Marketplaces, business models, business

practices, management

Economics Command-and-control development vs. free

market

Philosoph y Software as a model/representation of reality

SFOC? Snrina 2005

Dealing with flexibility

Another underlying problem: because of the large space
of flexibility, it is possible to spend an infinite amount of

time on most of the subtasks of software development

e How do we ensure we are solving the right problem?
I.e., how can we tell whether the project will meet the
needs of users?

e How do we decide how well to solve each
subproblem?

e How do we rank non-functional requirements like
reliability, scalability, security, elegance?

SFOC? Snrina 2005

Managing creativity

Underlying problem: Programming is a highly creative

process, with an enormous space of flexibility

e Can that flexibility be controlled, measured, predicted

without stifling creativity?
e How does one manage artists? (Herding cats...)

e Would a large organization be able to manage the
writing of a good epic novel, on schedule and to
budget?

SFOC? Snrina 2005

My background

e Primarily academic
e Commercial experience: National Instruments, Shell
e Primarily UNIX, rarely Windows

e Largest project managed to date:
— Research simulator developed over eight years
— 35 KLOC, much of which should never have been
written

e Current project: 3 year grant, managing 5 part-time
programmers

SFOC? Snrina 2005




Applying SE in the real world

Every job is different. Different companies, projects will:

e use vastly different tools, platforms, development
processes

e have different cultures, expectations, environments

General problem-solving and management skills transfer,

but those are (nearly?) impossible to teach

SFOC? Snrina 2005

Typical real-world scenario 2

You may instead get a job at a company with a
well-defined development process and standards, and a
common set of tools.

(Of course, the tools and processes are likely to be
obsolete because they have been in use for many years.)

You will need to be able to work within their system,
quickly learning the concepts specific to their setup.

SEOC2 will give you general experience with typical
approaches, so that your specific situation can be

understood more easily.

SFOC? Snrina 2005

Typical real-world scenario 1

When you arrive at a new job at a company, one likely
possibility is to find a vague development process, loose
or no standards, and a mishmash of incompatible tools.

You will need to be able to know when SE
tools/approaches should be brought in, and candidate
tools to use.

SEOC2 will help expose you to these tools and

approaches.

SFOC? Snrina 2005

Typical real-world scenario 3

A third common employment situation is to be a member
of a small team, perhaps just yourself, charged with

building a web site or other small project.

Many different software development methods will work in

such a case, including “hacking and heroics”.

However, following approaches surveyed in SEOC2 will
help the system you create to be maintainable over the

long term, not just for the month it was originally written.

SFOC? Snrina 2005




What SEOC2 will not give you

e A recipe for success

(impossible, despite many claims)
e A plug-and-play set of SE tools (quickly outdated)
e Knowledge of all areas of SE

e A magic ability to predict schedule, budget, and the
needs of users

SFOC? Snrina 2005

Major topics

The syllabus lists the set of SE topics from which lectures
and assignments will be drawn. The depth of coverage of
each topic varies widely, in part to avoid overlap with other
courses. Major topics include:

Project management: Software development processes,
mitigating project risks
Design: Successful architectures for large systems

Techniques and tools: Refactoring, unit testing, bug
tracking, regression testing, configur ation management

People issues: How programming teams work

SFOC? Snrina 2005

Relation to other courses

CS2: Most of the major SE concepts were introduced in
CS2. These will be reviewed brieflyin SEOC2, but
those who have forgotten or have not taken CS2
should study the CS2 material on the course web
page.

SEOC1: SEOC1 is not a prerequisite, but we will try not
to duplicate material in SEOCL. In particular, this
class is not based on UML, and focuses on abstract
issues involving large-scale, long-term software

development, rather than specific design problems.

SFOC? Snrina 2005

Assessed coursework

Previous semesters used a single large design practical.
Because of licensing and other issues the assessed
coursework this semester will consist of smaller exercises
and reports. Due dates will be posted on the web page

very soon, so please check the web site at least weekly.

In place of some of the exercises, Master’s-level students
do a literature review term paper on a topic related to

large-scale, long-term software development.

SFOC? Snrina 2005




Summary

e Large-scale, long-term software development is

extremely difficult and unpredictable

e SE approaches and tools can help, but are not

guaranteed cures

e SEOC2 will help expose you to useful approaches and
tools

e Many of the most important lessons cannot be put into
an itemized list, and require experience with failures

and successes

SFOC? Snrina 2005




