
Design Patterns

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

SEOC2 Spring 2005: Design Patterns 1

Design Patterns

A design pattern is a standardized solution to a problem

commonly encountered during object-oriented software

development (Gamma et al. 1995).

A pattern is not a piece of reusable code, but an overall

approach that has proven to be useful in several different

systems already.

SEOC2 Spring 2005: Design Patterns 2

Contents of a Design Pattern

Design patterns usually include:

• A pattern name

• A statement of the problem solved by the pattern

• A description of the solution

• A list of advantages and liabilities

(good and bad consequences)

SEOC2 Spring 2005: Design Patterns 3

Design Patterns and Large-Scale
Development

For a large team, design patterns are useful in creating a

shared vocabulary.

First, everyone agrees on a standard reference text

(or set of them).

Informal discussions, class naming, etc. can then use the

pattern names.

Large groups can develop and name their own patterns.

SEOC2 Spring 2005: Design Patterns 4



Design Pattern Examples
Creational Patterns:

• E.g. Abstract Factory, Factory Method

Structural Patterns:

• Composite
• Proxy

Behavioral Patterns:

• E.g. Command, Visitor

These are from Gamma et al. (1995), but there are many

other pattern collections.

SEOC2 Spring 2005: Design Patterns 5

Composite: Pattern

aRectangleaLineaPicture

aPicture

aRectangleaLineaText

Composes objects into tree structures to represent

part-whole hierarchies.

Lets clients treat individual objects and compositions of

objects uniformly.

SEOC2 Spring 2005: Design Patterns 6

Composite: Problem

• User wants to be able to treat groups of things as a

unit

• Surrounding code would get complex if it were always

conditional on whether an object was a group or a

primitive

• Want to support hierarchical containers of containers

SEOC2 Spring 2005: Design Patterns 7

Composite: Solution

Three classes:

• Component: Shared interface between all, some

shared implementation

• Leaf: A primitive, implemented directly

• Composite: forall children Components, do operation

SEOC2 Spring 2005: Design Patterns 8



Composite: Example

aRectangleaLineaPicture

aPicture

aRectangleaLineaText

SEOC2 Spring 2005: Design Patterns 9

Composite: Advantages

• Simple support for arbitrarily complex hierarchies

• Clients can be simple — don’t need to know about

composition

• New Composite and Leaf classes can be introduced

without changing Component

SEOC2 Spring 2005: Design Patterns 10

Composite: Liabilities

• Hard for client to predict/restrict what components

might be encountered

• Hard to test that client works for all components

• Often need to define operations on Components that

make sense only for some Component types,

e.g. Composites

SEOC2 Spring 2005: Design Patterns 11

Summary

• Many other patterns available

• Design patterns help provide a library of solutions to

common OO problems

• Usually low level, but act as a vocabulary for a large

team

• Important to agree on definitions, apply consistently

SEOC2 Spring 2005: Design Patterns 12



References

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Pat-

terns: Elements of Reusable Object-Oriented Software. Reading,

MA: Addison-Wesley.

SEOC2 Spring 2005: Design Patterns 12


