
Architectural Patterns

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

Dr. David Robertson
dr@inf.ed.ac.uk

http://www.inf.ed.ac.uk/ssp/members/dave.htm

SEOC2 Spring 2005: Architecture 1

Design Patterns

A design pattern is a standardized solution to a problem

commonly encountered during object-oriented software

development (Gamma et al. 1995).

A pattern is not a piece of reusable code, but an overall

approach that has proven to be useful in several different

systems already.

SEOC2 Spring 2005: Architecture 2

Contents of a Design Pattern

Design patterns usually include:

• A pattern name

• A statement of the problem solved by the pattern

• A description of the solution

• A list of advantages and liabilities

(good and bad consequences)

SEOC2 Spring 2005: Architecture 3

Architectural Patterns

The fundamental problem to be solved with a large system

is how to break it into chunks manageable for human

programmers to understand, implement, and maintain.

Large-scale patterns for this purpose are called

architectural patterns. Design patterns are similar, but

lower level and smaller scale than architectural patterns.

See Buschmann et al. (1996), chapter 2 for more details.

SEOC2 Spring 2005: Architecture 4



Architectural Pattern Examples
High level decompositions:

• Layers
• Pipes and filters
• Blackboard

Distributed systems:

• Broker

Interactive systems:

• Model-view-controller
• Presentation-abstraction-control

Adaptable systems:

• Microkernel

SEOC2 Spring 2005: Architecture 5

Layers: Pattern

Component 1.1 Component 1.2

Component 2.1 Component 2.2

Component 3.1

Layer 1

Layer 2

Layer 3

SEOC2 Spring 2005: Architecture 6

Layers: Problem

• System has different levels of abstraction

• Typical: Requests go down, notification goes back up

• It is possible to define stable interfaces between layers

• Want to be able to change or add layers over time

SEOC2 Spring 2005: Architecture 7

Layers: Solution

• Start with the lowest level

• Build higher layers on top

• Same level of abstraction within a layer

• No component spreads over two layers

• Try to keep lower layers leaner

• Specify interfaces for each layer

• Try to handle errors at lowest layer possible

SEOC2 Spring 2005: Architecture 8



Layers: Example (TCP/IP)

TCP

FTP

IP

Ethernet

TCP

FTP

IP

Ethernet

physical connection

SEOC2 Spring 2005: Architecture 9

Layers: Advantages

• Reuse of layers

• Standardization of tasks and interfaces

• Only local dependencies between layers

• Programmers and users can ignore other layers

• Different programming teams can handle each layer

SEOC2 Spring 2005: Architecture 10

Layers: Liabilities

• Cascades of changing behavior

• Lower efficiency of data transfer

• Difficult to choose granularity of layers

• Difficult to understand entire system

SEOC2 Spring 2005: Architecture 11

Pipes and Filters: Pattern

When processing a stream of data, each processing step

is done by a filter and the filters are connected by pipes

carrying data.

Connecting filters in different combinations gives different

ways of processing the data streams.

SEOC2 Spring 2005: Architecture 12



Pipes and Filters: Problem

• Data stream processing which naturally subdivides

into stages

• May want to recombine stages

• Non-adjacent stages don’t share information

• May desire different stages to be on different

processors

• Helpful: Standardized data structure between stages

SEOC2 Spring 2005: Architecture 13

Pipes and Filters: Solution

• Filter may consume/deliver data incrementally

• Filters may be parameterisable (e.g. UNIX filters)

• Input from data source (e.g. a fil e)

• Output to a data sink

• Sequence of filters from source to sink gives a

processing pipeline

SEOC2 Spring 2005: Architecture 14

Pipes and Filters: Example

Lexical analysis

Syntax analysis

Semantics analysis

Intermediate code generation

Sy
m

bo
l t

ab
le

SEOC2 Spring 2005: Architecture 15

Pipes and Filters: Advantages

• Pipes remove need for intermediate files

• Can replace filters easily

• Can achieve different effects by recombination

(increases long-term usefulness)

• If data stream has a standard format,

filters can be developed independently

• Incremental filters allow parallelization

SEOC2 Spring 2005: Architecture 16



Pipes and Filters: Liabilities

• Difficult to share global data

• Parallelization is less useful than may seem

• Expensive if there are many small filters and a high

data transfer cost

• Difficult to know what to do with errors

(especially if filters are incremental)

SEOC2 Spring 2005: Architecture 17

Blackboard: Pattern

A central, “blackboard” data store is used to describe a

partial solution to a problem.

A variety of knowledge sources are available to work on

parts of the problem and these may communicate only

with the blackboard, reading the current partial solution or

suggesting modifications to it via a control component.

SEOC2 Spring 2005: Architecture 18

Blackboard: Problem

• Immature or poorly specified domain

• No deterministic or optimal solution known for problem

• Solutions to different parts of problem may require

different representational paradigms

• May be no fix ed strategy for combining contributions

of different problem solvers

• May need to work with uncertain knowledge

SEOC2 Spring 2005: Architecture 19

Blackboard: Solution

• Problem solvers work independently (and

opportunistically) on parts of the problem

• Share a common data structure (the blackboard)

• A central controller manages access to the blackboard

• The blackboard may be structured (e.g. into levels of

abstraction) so problem solvers may work at different

levels

• Blackboard contains original input and/or partial

solutions

SEOC2 Spring 2005: Architecture 20



Blackboard: Example

SegmentationPhrase
creation

Word
creation

Controller

Phrase1...Phrase2...

S1...S2...S3...S4...S5...S6...S7...S8...S9...

Word1...Word2...Word3...Word4...

Blackboard

SEOC2 Spring 2005: Architecture 21

Blackboard: Advantages

• Allows problem solvers to be developed independently

• Easy (within limits) to experiment with different

problem solvers and control heuristics

• System may (within limits) be tolerant to broken

problem solvers, which result in incorrect partial

solutions

SEOC2 Spring 2005: Architecture 22

Blackboard: Liabilities

• Difficult to test

• Difficult to guarantee an optimum solution

• Control strategy often heuristic

• May be computationally expensive

• Parallelism possible but in practice we need much

synchronization

SEOC2 Spring 2005: Architecture 23

Broker: Pattern

Decoupled components interact through remote service

invocations.

Communication is coordinated by a broker component

which does things like forwarding requests and relaying

results.

SEOC2 Spring 2005: Architecture 24



Broker: Problem

• Large scale system where scaling to many

components is an issue

• Components must be decoupled and distributed

• Services required for adding, removing, activating,

locating components at run time

• Designers of individual components should not need

to know about the others

SEOC2 Spring 2005: Architecture 25

Broker: Solution

• Use brokers to mediate between clients and servers

• Clients send requests to a broker

• Brokers locate appropriate servers; forward requests;

and relay results back to clients

• May have client-side and/or server-side proxies

SEOC2 Spring 2005: Architecture 26

Broker: Example

CORBA: Common Object Request Broker Architecture

(e.g. JADE)

OLE/DCOM/Active X

Multi-agent systems are often coordinated through

brokers (e.g. JADE) which provide a standard mechanism

for relaying messages based on a high-level

communication protocol .

Individual agents may be implemented in any language as

long as they can input/output according to the protocol.

SEOC2 Spring 2005: Architecture 27

Broker: Advantages

• Components can be developed independently

• Location transparency

• Components easily adapted

• Broker easily adapted

SEOC2 Spring 2005: Architecture 28



Broker: Liabilities

• Low fault tolerance

• Limited efficiency (high communications cost)

• Difficult to test

SEOC2 Spring 2005: Architecture 29

Model-View-Controller: Pattern

Interactive system arranged around a model of the core

functionality and data.

View components present views of the model to the user.

Controller components accept user input events and

translate these to appropriate requests to views and/or

model.

A change propagation mechanism takes care of

propagation of changes to the model.

SEOC2 Spring 2005: Architecture 30

M-V-C: Problem

• User interfaces are prone to change requests over

time

• Different users ask for different changes

• User interface technologies change rapidly

• You may want to support different “look and feel”

standards

• Important core code can be separated from the

interfaces

SEOC2 Spring 2005: Architecture 31

M-V-C: Solution

• Develop a core model which is independent of style of

input/output

• Define different views needed for parts/whole model

• Each view component retrieves data from the model

and displays it

• Each view component has an associated controller

component to handle events from users

• The model component notifie s all appropriate view

components whenever its data changes

SEOC2 Spring 2005: Architecture 32



M-V-C: Example

Pie chart Bar chart

Spreadsheet

Labour: 60%
Tory: 30%
Lib.Dem: 10%

Views

Controller

Model

SEOC2 Spring 2005: Architecture 33

M-V-C: Advantages

• Multiple views of the same model

• View synchronization

• View components can be plugged in

• Changes to interfaces without touching the model

SEOC2 Spring 2005: Architecture 34

M-V-C: Liabilities

• Too complex for simple interface problems

• Frequent events may strain simple change

propagation mechanisms

• Views and controllers aren’t modular in practice

• Changing the model is expensive if there are many

views

SEOC2 Spring 2005: Architecture 35

Presentation-Abstraction-Control:
Pattern

A system implemented as a hierarchy of cooperating

agents. Each agent is responsible for a specific aspect of

functionality, and consists of:

• A presentation component responsible for its visible
behaviour

• An abstraction component which maintains the data
model for the agent

• A control component which determines the dynamics
of agent operation and communication

SEOC2 Spring 2005: Architecture 36



P-A-C: Problem

• Interactive system viewed as a set of cooperating

agents, often developed independently

• Some agents specialize in HCI; others maintain data;

others deal with error handling, etc.

• Some notion of levels of responsibility in the system

• Changes to individual agents should not affect the

whole system

SEOC2 Spring 2005: Architecture 37

P-A-C: Solution

• Define top-level agent with core functionality and data

model, to coordinate the other agents and (possibly)

also coordinate user interaction

• Define bottom-level agents for specific , primitive

semantic concepts and/or services in the application

domain

• Connect top and bottom levels via intermediate agents

which supply data to groups of lower level agents

• For each agent separate core functionality from HCI

SEOC2 Spring 2005: Architecture 38

P-A-C: Example

• Information system for political elections, with:

– Spreadsheet for entering data

– Various tables and charts for presenting current
standings

• Users interact through graphical interface but different
versions exist for different user needs

• Top-level agent holds data repository

• Different bottom-level agents for different types of
charting, analysis and error handling

• Intermediate agent to coordinate views of system

SEOC2 Spring 2005: Architecture 39

P-A-C: Advantages

• Separation of different concepts as individual agents

that can be maintained separately

• Changes to presentation or abstraction in an agent

doesn’t affect other agents

• Easy to integrate/replace agents

• Suits multi-tasking

• Suits multi-user applications

SEOC2 Spring 2005: Architecture 40



P-A-C: Liabilities

• Can have too many, too simple bottom-level agents

• Can be difficult to get control right while maintaining

independence of agents

• Long chains of communication may be inefficient

SEOC2 Spring 2005: Architecture 41

Microkernel: Pattern

For systems which must be easily adaptable to changing

requirements, separate minimal functional core from

extended functionality and customer-specific parts.

Provide sockets in the microkernel for plugging in these

extensions and coordinating them.

SEOC2 Spring 2005: Architecture 42

Microkernel: Problem
• Software systems with long life spans must evolve as

their environment evolves

• Such systems must be adaptable to changes in
existing platforms and must be portable to new
platforms

• There may be a large number of different but similar
platforms

• To conform with standards on different platforms it
may be necessary to build emulators on top of the
core functionality

• Thus the core should be small

SEOC2 Spring 2005: Architecture 43

Microkernel: Solution
• Build a microkernel component which encapsulates all

the fundamental services of your application

• The microkernel:

– Maintains system-wide resources (e.g. files)

– Enables other components to communicate

– Allows other components to access its functionality

• External servers implement their own view of the
microkernel, using the mechanisms available from the
microkernel

• Clients communicate with external servers using the
communication facilities of the microkernel

SEOC2 Spring 2005: Architecture 44



Microkernel: Example

Operating system for desktop computers.

Must be portable to relevant hardware platforms and

adapt as these evolve.

Must be able to run applications developed for other

established operating systems - users being able to

choose which OS from a menu.

Each of these OSs is built as an external server on top of

the microkernel.

SEOC2 Spring 2005: Architecture 45

Microkernel: Advantages

• Porting to a new environment normally doesn’t need

changes to external servers or clients

• Thus external servers or clients can be maintained

independently of kernel

• Can extend by adding new external servers

• Can distribute the microkernel to several machines,

increasing availability and fault tolerance

SEOC2 Spring 2005: Architecture 46

Microkernel: Liabilities

• Performance overhead in having multiple views of

system

• May be difficult to predict which basic mechanisms

should be in the microkernel

SEOC2 Spring 2005: Architecture 47

Summary

• Architectural patterns allow systems to be broken into

chunks that can be developed (to some degree) and

maintained independently

• These patterns support large-scale, long-term

development and maintenance

• Not a recipe, just an approach

SEOC2 Spring 2005: Architecture 48



References

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M.

(1996). Pattern-Oriented Software Architecture: A System of Pat-

terns. Hoboken, NJ: Wiley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Pat-

terns: Elements of Reusable Object-Oriented Software. Reading,

MA: Addison-Wesley.

SEOC2 Spring 2005: Architecture 48


