‘Veriﬁcation & Validation'

Verification is getting the system right.

Validation is getting the right system.

Both things are difficult to do, and difficult to
show that you have done appropriately.

We first look at an example of V & V for a

very simple system.
Then we consider the problem more generally.

But first, a word about lifecycles ...

‘V & V in Lifecycles'

PRAGMATICS
Requirements Validated system

N\ 4

Architecture design Verified architecture

N\ vl

System specification Verified application

N A

Application

If arguments for “good engineering” are often
by deduction, induction or construction
[MacKenzie] then construction currently
dominates high levels.

‘V & V Raw Material'

Requirements : Informal (normally)

description of users’ needs.

Specifications : Formal/informal description

of properties of the system.

Designs : Describe how the specification will
be satisfied.

Implementations : Source code (normally)

of the system.

Changes : Modifications to correct errors or
add functionality.

V&V Objectives'

Correctness : Is the system fault free?

Consistency : Does everything work in

harmony?

Necessity : Are there things in it which

aren’t essential?

Sufficiency : Is everything essential there?

Performance : Does it do the job well
enough?

‘V & V Example: Traffic Light'

amber red green green amber red

ipitial +1 +2 +3 +4 +5
time

What colours are the lights at different time
points given specific start states?

Can particular sequences of lights occur at any
time?

‘V & V Example: Testing (1) I

light(C,T;)
light(red, T)
light(green,T)

light(green,T)

light(amber,T)

init_time(T;) N init_colour(C) (1
prev(T,Tp) A light(amber,Tp) (2
prev(T,Ty) Alight(red,Tp) (3

)
)
)
)

prev(T,Typ) A light(green, Tp)4
prev(Tp, Ts) A light(red, Ts)

prev(T,Tp) Alight(green, Tp)(5)
prev(Tp, Ts) A light(green,Ts)

‘V & V Example: Testing (2) I

prev(T,T,) < not(init_teme(T)) AT, is T — 1

init_time(0)

init_colour(amber)

‘V & V Example: Limits of Testing'

This goal is easy to test:

AC.light(C, 5)

This goal is difficult to test:

AT, Ty.light(red, T)A\be fore(T, Ty) Nlight(red, Ty)
(9)

‘V & V Example: Adapting Spec'

At amber now light(amber)

At red immediately after (Olight(red)
At red i points after initial ('light(X)
Always red after initial Olight(red)

Sometime red after initial Olight(red)

Combine with normal connectives of FOPC:
O(Olight(red) < light(amber))
Conventional to write this in shorthand as:

Olight(red) < light(amber)

‘V & V Example: Adapted (1) I

Specification:

Olight(red) light(amber)
Olight(green) light(red)

O*light(green) Olight(green)A
light(red)

O?light(amber) Olight(green)A
light(green)

light(amber)

Properties:

O°light(C)
O(light(red) A Olight(red))

(12)

(13)

(14)

10

‘V & V Example: Proof Rules'

Goal

Conditions

AFQ'P

AFQ'P

AFO(O'PAQ)

AFO(O'PAQ)

AFQO'P

AFO(O'PAQ)

AFO(O'PAQ)

AFS(O'PAQ)

J (O*P «+ C) € A,
} AFC

(O’P<=C) € A,i>j,
AFQIiC }

} (OQI P+ C)eE A, >i,

LAHC/\OOj L Q)

(QJP<:C)€AJ>7,
AFOCANDITQ) }
}(DOjP(—C)EA,’LZ],
AFC

f (OIP <+ C)€e A,j >, }
AF (CANOITQ)
}(DOJ'P<—C)€A7,>],
kAI—(C/\OQ

(OJP<=C)€A7,>],
l AFO(OICAQ)

|
}
|

11

V & V Example: Proof'

O(light(red) A Clight(red))
/4\
10 O(light(amber) A OOlight(red))

A

true AN OOlight(red)
| equivalent

true A & Q) light(red)

N

true A\ Olight(amber)

N

true

12

‘V & V Example: Lessons'

Difficult to do extremely convincing V &

V, even with highly formal systems.
Representation and analysis interact.

Analysis of specification may not transfer
to code.

Nevertheless, we do get insights by formal
analysis.

13

V &V Limitations.

Usually it is impractical to test a program

on all possible inputs.

Even if we can enumerate the inputs, it
may be impractical to test all execution
paths.

Proofs of equivalence between programs

may be easier, but

That’s not the same as proving absolute

correctness.

14

V&V Approaches'

Testing : We saw an example, let’s look more

closely.

Proof of correctness : We've seen enough

for now.

Technical reviews : structured group review

meetings.

Simulation and prototyping : Essentially a
form of testing.

Requirements tracing : Relating

requirements to software/design structures

(e.g. modules, use cases).

15

‘Black-box Testing (1) I

Tests are derived from the program

specification.
System viewed as a black-box.

How do we choose appropriate inputs?
Input test data

Inputs triggering
anomalies

Output test results

Outputs signalling
defects

e (Guess what’s inside the box.

e Form equivalence partitions.

16

‘Black-box Testing (2) I

Equivalence partitioning relies on the
assumption that we can separate inputs into
sets which will produce similar system

behaviour.

Then methodically choose test cases from each
partition. One method is to choose cases from

midpoint (typical) and boundary (atypical) of

each partition.

For example, suppose we are testing a search
algorithm which uses a lookup key to find an
element in a (non-empty) array. One partition
of the test cases for this example is between
inputs which output a found element and those
for which there is no element in the array.

17

‘White-box Testing (1) I

Analyse internal structure of code to derive
test data.

Binary search routine from [Sommerville].

void Binary_search (elem key, elem* T, int size,
boolean &found, int &L)

int bott, top, mid ;
bott = 0 ;
top = size -1 ;
L = (top + bott) / 2 ;
if (T[L] == key)

found = true ;
else

found = false ;
while (bott <= top && !'found)
{

mid = top + bott / 2 ;

if (T[mid] == key)

{

found = true;
L = mid
}
else if (T[mid] < key)
bott = mid - 1 }

18

‘White-box Testing (2) I

Think of program in terms of flow graphs.

+ + |
P T
R N

if-then-else while-loop case-split

19

‘White-box Testing (3) I

Now draw a flow graph for the program.

—-

while bott <= top loop

if not found then

6

7

/ if T[mid] == key then

if T[mid

S

9

| < key then

20

‘White-box Testing (4) I

The paths through this flow graph are:
e 1,234,12,13
e 1,2,3,5,6,11,2,12,13
e 1,23,5,7,8,10,11,2,12,13
e 1,23,5,7,9,10,11,2,12,13
If we follow all these paths we know:

e Every statement in the routine has been
executed at least once.

e Every branch has been exercised for a

true/false condition.

This doesn’t take data complexity into account.

21

Testing Levels I

Module testing : Local conformance to

specification.

Integration testing : Checking that modules
work together.

System testing : Concentrates on system

rather than component capabilities.

Regression testing : Re-doing previous tests

to confirm that changes haven’t

undermined functionailty.

22

‘ Regression Testing.

Can’t afford to re-do all earlier tests so look for

particular errors, e.g.:

e Data corruption errors (e.g. from shared
data).

e Control sequencing errors (e.g. removing

item from a queue before it is placed there).

e Resource contention (e.g. deadlocks).

e Performance deficiencies.

A heuristic is to pay more attention to
re-testing older capabilities.

Often have baseline tests, augmented with
those specific to the modification.

23

‘Integration Strategies (1)'

At this stage we are primarily looking for

errors in interfaces between components, e.g.:

Import/export type/range errors : some

of these can be detected by compilers.

Import/export representation errors :
e.g. an “elapsed time” variable exported in
milliseconds and imported as seconds.

Domain errors : when an input follows the

wrong path due to incorrect control flow.

Computation errors : input follows the
right path but error in assignment causes
the wrong function to be computed.

Timing errors : in real-time systems where
producer and consumer of data work at

different speeds.

24

‘Integration Strategies (2)'

There are numerous ways of organising an

integration testing regime which follows

product development:

Top-down : Start with topmost component,
simulating lower level components with

stubs. Repeat process downwards.

Bottom-up : Start with low level components
and place test rigs around these. Then
replace test rigs with actual components.

Threaded : Identify major functions and test
these, working out from a “backbone”
system.

25

‘Transaction Flow Analysis'

Identify key “transactions” seen from users’
points of view (e.g. a request to print a file).

Then follow the paths of consequences of these
transactions through the control flow of the

program.

Then decide what to test on these paths (e.g.:

e Every link on the path.
e Each loop for some number of iterations.

e Combinations of paths between

transactions.

e Looking for unexpected combinations of
paths.

26

Stress Analysis I

Analysing the behaviour of the system when its
resources are saturated (e.g. for an operating
system, request as much memory as the system
has available).

First identify which resources should be

stressed (e.g. file space, I/O buffers, processing

time).

Then build stress rigs (e.g. by writing
generators for large volumes of data).

Now see what happens when the system is
pushed beyond the limits you anticipated.

27

‘ Failure Analysis I

Analysing how the system will react to failures

(internal or external).

Often involves a different form of modelling,
where incorrect rather than normal operation is

being described.

28

‘Building aV &V Plan'

Identify V & V goals.

Select appropriate techniques at different
levels.
Assign organisational responsibilities:

— Development organisation (prepares and
executes test plans).

— Independent test organisation (runs the
tests).

— Quality assurance organisation

(considers effect on process/product

quality).

Integrate your techniques within the
product lifecycle.

Put in place a system for tracking

problems uncovered.

Institute a log of test activities.

29

‘Cleanroom Software development'

Avoid defects by manufacturing in an

“ultra-clean” atmosphere.

This needs:

e Formal specification.

e Incremental development (perhaps
partitioned by modules).

Structured programming and stepwise
refinement (so both structural elements

and design choices are constrained).

Static verification (e.g. using proof of

correctness).

Statistical testing of integratred system.

30

