‘Estimating Software Size'

Size isn’t everything in a software project but

it does influence most things (e.g. resources,

cost).

If we don’t have an accurate prediction of size
it is difficult to plan.

We look at:
e Different approaches to size estimation.

e Trying to tame the size problem via re-use.

Different Approaches I

Through expert consensus
(Wideband-Delphi).

From historical “population” data (Fuzzy).

From standard components (Component
estimating).

From a model of function (Function point).

‘ Wideband-Delphi Estimating I

1. Group of experts: [E1,...,F;, ..., Ey,].
. Meet to discuss project.

. Each anonymously estimates size:

(X1, Xay oo, Xy

. Bach E; gets to see all the Xs
(anonymously).

. Stop if the estimates are sufficiently close
together.

. Otherwise, back to step 2.

Size classes of code in hypothetical domain (in

K-LOC).

‘ Fuzzy Estimating I

Range

Size

Low

High

V Small

2

1

4

Small

8

4

16

Medium

32

16

64

Large

128

64

206

V Large

012

256

1028

Need lots of recent historical data for this and

it only gives a gross estimate.

Standard Component Estimating'

Gather historical data on key components.

Guess how many of each type you will need
(M;).

Also guess largest (L;) and smallest (S;)

extremes.

Final estimate (FE;) is a function of M;, L;
and Sz

For example, F; = (S; + (4« M;) + L;)/6

Function Point Estimating (1)'

Based on a weighted count of common
functions of software.

The five basic functions are:

Inputs : Sets of data supplied by users or
other programs.

Outputs : Sets of data produced for users or
other programs.

Inquiries : Means for users to interrogate the

system.

Data files : Collections of records which the
system modifies.

Interfaces : Files/databases shared with

other systems.

Function Point Estimating (2)'

Function | Count | Weight || Total
Inputs 8 4 32
Outputs 12 5 60

Inquiries 4 4 16

Data files 2 10 20
Interfaces 1 7 7

Total 135

May adjust function point total using

“Influence factors”.

‘ Re-Use '

With ground-up programming the cost of
development rises sharply as software size

iIncreases.

Software size tends to be, on the whole, larger

In systems year on year.

Maybe we can take advantage of earlier effort
by re-using its products?

What might be Re-used?'

Code
Designs and architectures.
Documentation.

Tests.

anything else which is experience.

‘Motivation for Re-use'

Saves money.

Cumulative debugging.

Shorter development time.

Encourages modularity.

10

‘Pitfalls of Re-use'

Big components are the most tempting and
most difficult to re-use.

Re-used components are older so may
reach obsolescence sooner.

May not be able to re-use component and

documentation.

May be hard to find the original designer if

1t goes wrong.

Hard to find the right thing.

Tempting to twist project to fit re-usable

components.

It costs to design components specifically

for re-use.

Need to consider re-use in the previous

project.

11

