‘ Overview '

In this lecture we work through the topics of
the module and identify what I consider to be
the most important points to remember.

The lecture notes and slides (on the CS2 Web

site) are essential revision material but you will

want to read more! I've suggested some basic
starting points on the slides which follow.




‘ Software failures '

You know about the sorts of pathological
problems which can occur on large and small
projects:

Documented failures in large projects :
e.g. Deadline fixation

Misconceptions leading to failure : e.g.

Timing of benefits




‘ Standards I

You know the basics of software standards:

Why they are useful : e.g. Repeatability of
process

Their legal implications : e.g. Fault

attribution

The levels at which standards apply :

e.g. Principles v element standards.

Key organisations producing standards :
e.g. IEEE, ISO

Examples of standards in key areas : e.g.

Systems engineering standards




‘ Methodologies I

You know the essentials of two contrasting

forms of development methodology:

The Unified Process : A highly controlled
design method consisting of waterfall

iterations within phases.

Extreme Programming : A more adaptive
style of design relies on tight design cycles

and configuration management.

Reference: Jacobson, Booch and Rumbaugh 1998
The Unified Software Development Process,
Chapter 1




Economics of quality'

You know some of the factors involved in

balancing quality against cost:

The means of quality control : e.g.

inspection v testing

Quality over lifecycles : e.g. cumulative

quality improvement

Key quality parameters : e.g. defect
injection v defect reduction

Algorithmic cost models : e.g. COCOMO

Reference: Sommerville 1996 Software

Engineering Chapter 29




Measurement I

You know the sorts of things to include in a

software measurement plan. In particular, you

know:

Some key issues to address : e.g. Growth

measures.

Means of identifying issues : e.g. Risk

assessments.

Limitations of measurement : e.g.
Incremental design means measuring

incomplete functions.

Basic estimators : e.q. Plot of staff months
against number of lines of source code

produced.

Reference: Humphrey 1995 A Discipline for
Software Engineering Chapter 4




Software size '

You know several methods for estimating

software size:
Consensus methods : e.g. Delphi
Population data methods : e.g. Fuzzy

Standard component methods : e.g.

Component estimating

Function based methods : e.g. Function

point analysis

Reference: Humphrey 1995 A Discipline for
Software Engineering Chapter 5




Risk reduction patterns'

You know how different aspects of projects can
create different risks to project success and, for

each aspect, you know ways of reducing the

risk:

Knowledge inadequacies : e.g. Prototype
Teaming : e.g. Holistic diversity
Productivity : e.g. Gold rush
Ownership : e.g. Owner per deliverable
Distractions : e.g. Team per task

Training : e.g. Day care

Reference:

members.aol.com/acockburn/riskcata/riskbook.htr




‘Veriﬁcation and Validationl

You know several techniques for V & V:

Testing : e.g. Black/white box testing

Proof of correctness : e.g. Temporal logic

You also know how V & V extends beyond
individual models:

e Integration testing
e System testing

e Regression testing

Reference: Sommerville 1996 Software

Engineering Chapters 22, 23 and 24




‘Goodbye from S.E. ... For Now'

You may want to do more software enginering
in the next two years. Currently there are two
modules for this:

e Software Engineering with Objects and

Components 1.

e Software Engineering with Objects and
Components 2.

I hope to see you there.

10




