‘ Quality Management I

High quality software is dependable, durable,
fit for purpose, well supported, portable, easily
integrated with other tools.

There are numerous routes to improvement of

software quality: through the product (direct)

and through the process (indirect).

Much of this lecture taken from Watts
Humphrey 1995 A Discipline for Software
Engineering and from Sommerville 1996

Software Engineering.

‘Not Just Absence of Defects.

We have looked a lot at defect checking (e.g.

testing) but these are a means to an end, not
the end itself.

If you are focused on product quality then:

e You tend to produce components with
fewer defects

e so you have more time in your schedule for
things like usability and compatibility
checking.

If you don’t focus on product quality then:

e You tend to produce components with
more (hidden) defects

e so you have to spend more time fixing
these (late)

e so you have little time for anything else

e so you produce minimum quality software
even though you put huge amounts of
effort into defect checking.

The Cost of Quality.

The reason we can’t have uniformly high
quality software is that it takes time and
money to do the following things:

Spot a problem.

Isolate its source.

Connect it to the real cause.

Fixing the requirements, design and code.
Inspecting the fixes.

Testing the fix for this problem.

Testing the fix hasn’t caused new problems.

Changing the documentation.

For quality to improve, the cost of this must be

less than the penalty for not fixing the problem
plus the revenue lost by delaying release of the

product.

‘Quality Delays are Expensive'

A

Average fix time

Design Code Code Compile Test Use
review review

So we would like to have reasonably high

quality components before testing and catch
difficult defects early.

But there is not necessarily a correlation
between ease of identification of a defect and

its ease of correction.

‘It Matters How you Look'

Humphrey estimates that experienced software
engineers normally inject 100 or more defects

per KLOC.

Perhaps half of these are detected
automatically (e.g. by the compiler).

So a 50 KLOC program probably contains
around 2500 defects to find (semi-)manually.

Suppose we need about five hours to find each
of these defects by testing.

That’s over 20000 person-hours for the whole
program - bad news.

But inspection may be able to find up to (say)
70% of these defects in 0.5 hours per defect.

So the first 1750 defects could take 875 hours;
then we only have 750 to find in testing at
(say) 8 hours each. That’s less than 7000 hours
in total - better news.

‘Cumulative Quality Improvement'

y(IN) is fraction of defects removed in step
N

r(N) is the number of defects removed at
step V.

e(NN) is the number of defects escaping at
step V.

The difficulty with this equation is that we can

only estimate e(/V) as a function of
e(l),...,e(N —1).

Notice that e(/N) can increase if defects are
injected by changes.

‘Effect of Change in Performance'

Suppose you have 1000 KLOC with an average
of 100 defects per KLOC. That’s 100000
defects to find.

Scenario 1:

e You have an inspection process which finds
75% of these, leaving 25000 to find in test.

e You then use 4 levels of test, each trapping
50% of remaining defects. That leaves 1562
defects in the final code.

Scenario 2:

e Your inspection process only finds 50% of
defects, leaving 50000 to find in test.

e The same 4 levels of test each trap 50% of
remaining defects. That leaves 3125 defects
in the final code.

So a 33% drop in yield in inspection caused a

doubling in the number of defects.

‘Sensitivity to Defect Injection'

Assuming we start with no defects:

P;=(1-p)

where:

e p is the probability of injecting a defect at
a stage.

e 7 is the number of stages.

e P is the probability of a defect-free product
at stage 1.

0.904 = (1 — 0.01)1°
0.4057 = 0.5 % (1 — 0.01)°

so a high probability of fault injection in one
step radically drops the overall probability of
freedom from defects.

This is why cleanrooms are so clean.

Sensitivity to Defect Removal'

Ri=N=x(1-y)

where:
e NN is the initial number of defects.
e y the fraction of defects removed per stage.
¢ is the number of stages.

R; is the number of defects remaining at
stage 1.

32 = 100000 * (1 — 0.8)°
96 = 100000 * (1 — 0.4) * (1 — 0.8)*

so dropping a lot lower on one stage of a high
quality defect removal process has a small
effect on overall yield.

This (combined with result from previous slide)
is why it is better to be defect-free than to rely
on fixes.

‘ Yield Management I

If we had no resource limitations then an 80-40

test-inspection yield is no different from a
40-80 yield.

But test defect correction typically involves
more labour than inspection defect correction,
so it costs more and the extra labour means

... more opportunities for defect injection.

So manage for maximum return for minimum

cost and, if in doubt, attempt to maximise on

early design stages.

10

‘Algorithmic Cost Modelling'

Various models exist for predicting cost of
software production based on estimates of key

parameters (e.g. number of programmers).

A popular model the COCOMO model, which

in its simplest form is:
E=CxP°«xM

where:

e P is a measure of product size (e.g. K

Delivered Source Instructions)
C' is a complexity factor.
s is an exponent (usually close to 1).

M is a multiplier to account for project

stages.

E is the estimated effort (e.g. in
person-months).

11

‘Basic COCOMO Model Examples'

We ignore the multiplier, M, so £ = C * P?

Then we estimate C' and s for different types of
project:

Simple (E = 2.4 % P19) : A well understood

application developed by a small team.

Intermediate (E = 3.0 x P1-12) : A more
complex project for which tem members

have limited experience of related systems.

Embedded (E = 3.6 x P1?%) : A complex

project in which the software is part of a

complex of hardware, software, regulations

and operational constraints.

We are looking for rough (order of magnitude)
estimates of effort.

12

‘Behaviour of the Basic Examplesl

1000

Person-months

A

Embedded
Intermediate
/mplc

—
120

K Delivered Source Instructions

13

‘Extending the COCOMO Model'

The basic examples didn’t use the multiplier,
M.

If we want to use it then it often is estimated
as a function of key attributes of the problem.
The effect is to modify the basic estimate.

Where do the attributes come from?

e Product attributes (e.g. reliability).

e Computer attributes (e.g. memory

constraints).

Personnel attributes (e.g. programming

language experience).

Project attributes (e.g. project
development schedule).

14

‘COCOMO Multiplier Examplel

If the basic estimate is 1216 person-months.

Attribute

Magnitude

Multiplier

Reliability

V high

1.4

Complexity

V high

1.3

Memory constraint

High

1.2

Tool use

Low

1.1

Schedule

Accelerated

1.23

Now 1216 * 1.4 %x1.3%x1.2x1.1%1.23 = 3593

Attribute

Magnitude

Multiplier

Reliability

V low

0.75

Complexity

V low

0.7

Memory constraint

None

1

Tool use

High

0.9

Schedule

Normal

1

Now 1216 *0.75 % 0.7*x1x0.9x1 = 575

15

‘Model with Care'

The predictions of models are approximate and
sensitive to small changes in parameters so
perform a sensitivity analysis to changes in

parameter values.

Initial estimates are likely to be wrong. Check

them when you have more experience.

Predictions may constrain what actually
happens. If you base your project plan on an
estimate of effort which is too low it may be
difficult retrospectively to increase the
budgeted amount of effort, so you will have to
cut quality to stay within your effort target.
Your prediction may turn out to be accurate

but at the cost of bad engineering.

16

