‘ Development Methodologies I

A methodology is a system of methods and
principles used in a particular sub-discipline of

software design.

There are a large number of these, reflecting

the way in which software design in practice
has specialised. Those which are mature
usually are supported by specialist tools and

techniques.

We discuss two:
e The Unified Process

e [xtreme Programming

The Unified Process'

A traditional style of incremental design driven
by constructing views of a system architecture.

e Component based.

e Uses UML for all for all blueprints.
e Use-case driven.

e Architecture centric.

e Iterative and incremental.

Details in Jacobson, Booch & Rumbaugh et.al.
1998, The Unified Software Development
Process.

Phases of Design Cycles'

Design proceeds through a series of cycles, each
of which has phases:

Inception : Produces commitment to go

ahead (business case feasibility and scope

known).

Elaboration : Produces basic architecture;
plan of construction; significant risks
identified; major risks addressed.

Construction : Produces beta-release system.

Transition : Introduces system to users.

uonIsuel],

uonoNNSuo))

uoneloqe[q

1234567809
ITERATIONS

uondaouy

Implementation

Requirements
Analysis
Design

SMO TIXIOM

Waterfall Iterations Within Phases

‘The Product: A Series of Models.

Analysis specification Use-Case
model = model

realisati

Design
model distribution

implementatipn

Deployment

model verification

Implementation
model

‘ Use Cases '

“A use case specifies a sequence of actions,
including variants, that the system can perform
and that yields an observable result of value to
a particular actor.”

These drive:
e Requirements capture.

e Analysis and design of how system realises

use CasSes..

Acceptance/system testing.

Planning of development tasks.

Traceability of design decisions back to use

Ccases.

‘Use Case Example: 1'

Initial use-case diagram.

Customer Withdraw money

O

A

Deposit money

Transfer between
accounts

‘Use Case Example: 2'

Analysis classes for withdrawing money

USE-CASE MODEL ANALYSIS MODEL

Withdraw money

PR \

-

— 7
- - 7
- P s

Dispenser Cashier Withdrawal Account
interface

‘Use Case Example: 3'

Collaboration diagram for withdrawing money.

, Cashier
ideptity jnterface tequest
Customer
® O

X Withdrawal
dispense auw

validate and
Dispenser withdraw

O

Use Case Example: 4

Design classes introduced for analysis classes.
ANALYSIS MODEL

O O O Q

Cashier Dispenser Withdrawal Account
interface) 4 \\ \\ " \ 4

! /
= T /

I ’
I

Dispenser Withdrawal Account
sensor

Client Account

Dispenser
manager manager

feeder

Card reader

Transaction
counter manager

DESIGN MODEL

10

‘Use Case Example: 5'

Class diagram which is part of the realisation

of the design model.

Card reader
Customer//
O \

—— Display

RN

Account
manager

A

Account

Client | Transaction
manager manager

Key pad

Y
Withdrawal

Dispenser
feeder Cash
counter

Dispenser
sensor

11

Use Case Example: 6

Sequence diagram for part of the realisation.

Customer
O Client Cash Transaction
;t Card reader || Display || Key pad || manager || counter || manager

Insert card .
Card [inserted

Ask for PIN code

Show request

Specify PIN cod

PIN code

Request for validation

Ask amount

Show request

Specify amount
Pertly Amount

Request cgsh available

Request withdrawal

12

‘Extreme Programming (XP) I

Traditional “heavyweight” methodologies (e.g.
the Unified Process) concentrate on carefully
controlled, up-front, documented thinking.

Assumption : Cost of unravelling decisions
made in early stages rises (exponentially)
as we go through later stages.

Benefit : Global control throughout

minimises risk of unravelling.

XP is more “lightweight” and concentrates on
the the dynamics of closely knit, fast moving

design/coding teams.

Assumption : Reaction to change can be
made constant through lifecycle.

Benefit : Design can be more flexible - in
particular we may re-visit early decisions
more easily.

See Kent Beck, 1999, Extreme Programming
Explained.

13

XP is Controversial'

An IBM Java poll on XP (currently cited at

www.xprogramming.com) said roughly this:

“I’ve tried it and loved it” (51%)
“I’'ve tried it and hated it” (8%)

“It’s a good idea but it could never work”

(25%)

“It’s a bad idea - it could never work”

(16%)

14

‘How XP Imposes Control'

Through twelve “practices” to which designers
adhere (using whatever other compatible
methods and tools they prefer).

Not strongly influenced by a particular design

paradigm (like the Unified Process).

Does require a strongly held view of how to
approach design.

We consider some key practices in the following

slides.

15

The Planning Process'

The “customer” defines the business value of
desired features.

The programmers provide cost estimates for

producing them in appropriate combinations.

Not allowed to speculate about producing a
total system which costs less than the sum of

its parts.

16

Small Releases I

Put a simple system into production early.

Re-release it as frequently as possible while

adding significant business value on each

release (e.g. Aim for monthly rather than

annual release cycles).

The aim is to get feedback as soon as possible.

17

Simple Design I

Do the simplest thing that could possibly work.

Don’t design for tomorrow - you might not
need it.

18

‘ Testing I

Focus on validation at all times.
Write the tests before writing the software.

Customers provide acceptance tests.

All within a rapid design cycle.

19

Refactoring I

XP dives straight into coding, so re-design is
vital.

“Three strikes and you refactor” principle - e.g.

consider removing code duplication if:

e The 1st time you need the code you write
it.
e The 2nd time, you reluctantly duplicate it.

e The 3rd time, you refactor and share the
resulting code.

This needs a system of permissions for change

between teams.

20

Pair Programming I

All code is written by a pair of people at one

machine.

e One partner is doing the coding.

e The other is considering strategy (Is the

approach going to work? What other test
cases might we need? Could we simplify
the problem so we don’t have to do this?
etc).

This is unpalatable to some but appears vital
to the XP method.

21

‘ Collective Ownership I

Put a good configuration management tool in

place.

Then anyone is allowed to change anyone else’s
code modules, without permission, if he or she
believes that this would improve the overall

system.

22

Continuous Integration'

Integration and testing happens no more than
a day after code is written.

This means that individual teams don’t

accumulate a library of possibly relevant but

obscure code.

23

40-Hour Week'

XP is intense so it is necessary to prevent
“burnout”.

Designers are discouraged from working more

than 40 hours per week.

If it is essential to work harder in one week
then the following week should drop back to

normal (or less).

24

‘ On-site customer '

Someone who is knowledgeable about the
business value of the system sits with the

design team.

This means there is always someone on hand to

clarify the business purpose; help write realistic

tests; and make small scale priority decision.

25

Coding Standard I

Since XP requires collective ownership (anyone

can adapt anyone else’s code) the conventions

for writing code must be uniform across the

project.

This requires a single coding standard to which

everyone adheres.

26

